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Anthropogenic biases in chemical reaction data 
hinder exploratory inorganic synthesis
Xiwen Jia1, Allyson Lynch1, Yuheng Huang1, Matthew Danielson1, Immaculate Lang’at1, Alexander Milder1, Aaron E. Ruby1,  
Hao Wang1, Sorelle A. Friedler2*, Alexander J. Norquist1* & Joshua Schrier1,3*

Most chemical experiments are planned by human scientists 
and therefore are subject to a variety of human cognitive biases1, 
heuristics2 and social influences3. These anthropogenic chemical 
reaction data are widely used to train machine-learning models4 
that are used to predict organic5 and inorganic6,7 syntheses. 
However, it is known that societal biases are encoded in datasets 
and are perpetuated in machine-learning models8. Here we identify 
as-yet-unacknowledged anthropogenic biases in both the reagent 
choices and reaction conditions of chemical reaction datasets using a 
combination of data mining and experiments. We find that the amine 
choices in the reported crystal structures of hydrothermal synthesis 
of amine-templated metal oxides9 follow a power-law distribution in 
which 17% of amine reactants occur in 79% of reported compounds, 
consistent with distributions in social influence models10–12. An 
analysis of unpublished historical laboratory notebook records 
shows similarly biased distributions of reaction condition 
choices. By performing 548 randomly generated experiments, 
we demonstrate that the popularity of reactants or the choices of 
reaction conditions are uncorrelated to the success of the reaction. 
We show that randomly generated experiments better illustrate 
the range of parameter choices that are compatible with crystal 
formation. Machine-learning models that we train on a smaller 
randomized reaction dataset outperform models trained on larger 
human-selected reaction datasets, demonstrating the importance of 
identifying and addressing anthropogenic biases in scientific data.

Scientific publications do not provide a representative dataset12. 
Confirmation bias favours the publication of positive results, yet the 
missing ‘failures’ are essential knowledge for modelling chemical reac-
tions6. Scientific attention is skewed by biases such as the ‘Matthew 
effect’, in which eminent individuals are given disproportionate credit10. 
Self-reinforcing preferential attachment (‘rich get richer’) mechanisms 
result in power-law distributions of citations, resulting in dispropor-
tionately popular articles10,11. The emerging ‘science of science’ disci-
pline attempts to quantify the role of social interactions in the selection 
of a research problem, career trajectory and citations13. Although there 
are studies of error in scientific decisions, these have tended to focus 
on individual-specific causes, such as variability in classification and 
inconsistencies in decision-making14,15. By contrast, systematic errors 
in the planning of scientific experiments have not been studied. In 
general, social influences, such as knowledge about others’ choices—for 
example, choice of reagents—can cause disproportionate popularity 
compared to the underlying quality of the item or choice3. Social influ-
ences in scientific decision-making have been widely speculated, but 
never explicitly confirmed. Social influence in scientific decisions may 
be a factor in the distribution of reported medicinal chemistry com-
pounds, which is unrelated to the intended application, cost or reaction 
difficulty16; the disproportionately few drug scaffolds that comprise 
the majority of antimalarial17 and other drug-candidate molecules18, 
the popularity of which is uncorrelated to their synthetic feasibility or 
biological activity; and the synthesis of new pharmaceutical molecules 

that resemble those the medicinal chemists involved have synthesized 
in the past19,20, which use a limited set of reactions21, the choice of 
which is uncorrelated to cost, estimated ease of the synthesis, or the 
properties of the reactants and products22. However, over-representa-
tion of a particular experimental choice need not be irrational. For 
example, 36% of entries in the Protein Data Bank (PDB) report the 
use of polyethylene glycol additives, which under-represents the true 
success rate of 59%, and many of these proteins cannot be crystallized 
using other additives23. This suggests that a lack of diversity among 
crystallization additives in the PDB stems from sub-optimal novelty 
seeking. Excessively consistent or inconsistent experimental choices 
that do not mimic the natural distribution of the underlying problem 
are a signature of anthropogenic influence.

We seek to determine whether there is evidence of bias in reactant 
choices for organically templated metal oxide syntheses. The incorpo-
ration of different organic amines results in compounds with diverse 
composition, local and extended connectivity, and functionality9, so 
an unbiased set of experimental efforts should consist of the broadest 
possible range of amine choices in reported compounds of this type. 
The discipline defines ‘success’ as formation of a crystal of sufficient size 
and quality to yield a stable single-crystal X-ray diffraction refinement. 
Most publishers of scientific reports require structures to be deposited 
in the Cambridge Structural Database (CSD). In this study, the number 
of reported compounds is used as a proxy for experimental effort and 
success for a particular amine. The CSD includes the structures of 5,010 
amine-templated metal oxides that contain 415 unique amines. The top 
17% commonly reported amines (70 individual molecules, the ‘popular’ 
amines) are found in 79% of the structures (3,947 distinct CSD entries), 
and correspondingly, the remaining 83% (345 molecules, the ‘unpop-
ular’ amines) of amines are found in just 21% of the structures (1,063 
entries; see Fig. 1). (Structures containing multiple amines preclude a 
precisely equal relationship.) The Gini coefficient of the distribution of 
amines in the database—a measure of statistical dispersion that quanti-
fies inequality among values of a frequency distribution—is 0.654, com-
parable to global wealth inequality. A log(proportion)–log(rank) plot 
(Fig. 1a, inset) is consistent with a single power-law generation process, 
consistent with a preferential attachment mechanism10,11. Similar dis-
tributions are observed in the subset of metal borates (Extended Data 
Fig. 1). Unpublished experimental records (from our Dark Reactions 
Project, https://darkreactions.haverford.edu/) provide evidence of 
bias in the conditions of attempted reactions, such as pH and reactant 
quantities. This database contains 557 hydrothermal vanadium borate 
reactions (motivated by the first report in the literature of this type of 
reaction24) consisting of the work of three students conducted over 
three years prior to the start of this study. The human-selected reac-
tions in this dataset are almost exclusively conducted at pH 8 (Fig. 2a), 
with quantities of amines that are unevenly distributed (Fig. 2b). These 
results are consistent with previous work showing that humans often 
use a one-variable-at-a-time strategy to explore reaction conditions, 
which is both inefficient and easily trapped in local optima25,26.
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The skewed distributions discussed above are consistent with anthro-
pogenic attention heuristics2, in which experimenters select reactants 
and reaction conditions that they ‘know’ to work, on the basis of their 
own experience, that of their colleagues or the literature. The inter-
play between shorter-timescale communicative memory and longer- 
timescale cultural memory11 results in power-law distributions such as 
that seen in Fig. 1. The precise nature of the underlying psychological 
process is an active area of debate1,2, and distinguishing between com-
peting models is challenging even in highly controlled psychological 
experiment settings27. For example, an aesthetic bias links symme-
try with a positive affect28, and this could lead researchers to favour 
experimentation with symmetric molecules. Alternatively, the fact that 
humans are more easily able to discriminate and recall symmetric three- 
dimensional objects29 might favour symmetric molecules when devis-
ing new experiments, through recall and attention heuristics2. Both sce-
narios yield unrepresentative datasets (that is, datasets that are ‘biased’), 
despite radically different mechanisms. Given the many possible types 
of anthropogenic influence and the difficulty of distinguishing them 
experimentally27, we instead demonstrate the presence of an anthro-
pogenic influence on the choice of reagents and reaction conditions, by 
eliminating alternative explanations and without assigning a specific 
psychosocial origin.

Non-anthropogenic factors can be classified following a classical 
fourfold theory of causes30. Efficient causes are the technical ability to 

perform the experiments. Here, hydrothermal syntheses have been con-
ducted for over 50 years9; the choices of reagent and reaction conditions 
present no pressure or corrosion resistance challenges. Therefore, no 
technical experiment limitations favour certain reagents or reactions 
conditions over others, and this cannot be the origin of the imbalances 
shown in Figs. 1, 2. Final causes favour particular product materials 
that have desired technological properties. Because functional diversity 
follows from structural diversity9, unbiased exploration should cover 
the broadest range of reagent structures, in contrast to the predomi-
nance of certain structures reported the public databases as shown in 
Fig. 1. Material causes—described by financial cost and reagent avail-
ability—were excluded by considering a structurally diverse set (pri-
mary through tertiary amines, and linear, branched, cyclic and aromatic 
molecules) of 55 commercially available amines, of which—based on 
the CSD—27 are popular, 16 are unpopular and 12 are absent. All the 
selected amines are commercially available in 5-g quantities from major 
suppliers, and there was no systematic difference in cost (Extended 
Data Fig. 2).

The only remaining non-anthropogenic cause is eliminated by exper-
iment. Here, the formal cause is the intrinsic propensity of some reac-
tants and reaction conditions to yield crystals. To make an unbiased 
assessment, we generated 10 random reactions for each of the 55 amines 
described above, by selecting a random pH level and amine quantity 
using two independent triangular distributions with the mode set at the 
value that has precedent in the literature, and with physically motivated 
upper and lower bounds (see Methods). The goal was not to efficiently 
explore the chemical space, but instead to establish a neutral estimate of 
the ‘reaction cross-section’ for each amine, revealing systematic reactiv-
ity differences between popular amines and not-popular amines (that 
is, those that were unpopular or absent from the CSD), centred around 
the reaction compositions that humans are likely to have attempted 
to search. Despite this, we note that random choices are often better 
than human expertise and comparable to more sophisticated numerical 
methods in fields as diverse as oil exploration31,32, chemical reaction 
discovery33 and numerous social and financial applications34.

Outcomes for all reactions were ranked using the four-class scoring 
system for crystal formation described in Methods section ‘Data cap-
ture’, with the stringent criterion that ‘success’ (outcome 4) consists only 
of crystals comparable to those used for the CSD data (single crystals 
with average crystalline dimensions great than about 0.01 mm). All 
four reaction outcomes occur nearly equally in reactions generated 
by the randomly selected reaction conditions for popular and not- 
popular amines (Fig. 3a; similar plots separating unpopular and absent 
outcomes are shown in Extended Data Fig. 3). Any single reaction 
generated by the randomly selected conditions is equally likely to be 
successful regardless of the popularity of the amine used. A typical 
exploratory synthesis campaign will test several variations of a reac-
tion until success is achieved or one decides to stop. Publishable data 
require only a single success. We modelled this as the observation of 
success (outcome 4) at least once in the set of 10 random experiments 
conducted for each of the 55 amines. At least one success is observed in 
17 (63% ± 9%) of the 27 popular amines and 21 (75% ± 8%) of the 28 
not-popular amines (Fig. 3b). We find there is no support for any differ-
ence in intrinsic reaction propensity between popular and not-popular 
amines. In fact, in our experiments, popular amines were less likely 
to successfully form crystals than not-popular amines; however, this 
(one-sided) success rate difference occurs with P = 0.26 in a random 
permutation. Having thus excluded the non-anthropogenic efficient, 
formal, material and final causes, only an anthropogenic explanation 
for the observed reactant choice distribution remains.

The randomized reaction outcomes expose anthropogenic influ-
ence in the choice of reaction condition. Human-selected reactions 
are biased towards smaller amine amounts, with a large peak at the 
precedent set by the literature (Fig. 2c). By contrast, we find limited 
dependence of the reaction outcome on amine choice, as the distribu-
tion of successful (outcome 4) and failed (outcomes 3, 2 and 1) reac-
tions mimics the triangular distribution that generates it. The choice of 
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Fig. 1 | Occurrence of amines in structures of reported metal oxide 
crystals. a, The number of crystal structures observed for each amine, 
plotted against the amine’s rank (ascending, by occurrence in the reported 
crystal structures). The inset shows the same data as a log(proportion)–
log(amine rank) plot. b, Cumulative proportion of crystal structures 
containing the most commonly occurring amines as a function of the 
proportion of total unique amines, ordered from those occurring in the 
most structures (and therefore with the highest proportion) to the least 
commonly occurring. The shaded region represents the Pareto split, in 
which the most frequently observed 17% of all amines occur in 79% of the 
structures.
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reaction pH that humans make is almost exclusively based on a litera-
ture precedent of pH 8 (Fig. 2d). However, although our randomized 
reactions indicate that a reaction performed at higher pH is—all other 
things held equal—more likely to be successful, reactions can be suc-
cessful over a wide range of pH.

Correcting anthropogenic bias improves machine-learning models. 
We compared machine-learning models trained on the complete set 
of (both successful and failed) human-selected reactions to models 
trained on our randomly generated (unbiased) reactions. The com-
parison was evaluated for a true time-separated hold-out test set of 
110 additional vanadium borate experiments, comprising 10 randomly 
generated reaction conditions for each of 11 amines. None of these  
11 test amines was present in either of the training sets. For the pur-
poses of training, we used only the subsets of the human-selected and 
randomly generated reaction condition datasets that contained the  
37 amines common to both sets, thereby reducing the training set sizes 
to 467 and 370 reactions, respectively. (Our human-selected training 
dataset has more diverse amine choices than typically present in the 
literature, as it used amine reaction data from our previous diversity- 
oriented studies6.) Restricting the training datasets in this way means 

that differences are solely due to choices of reaction conditions. To 
give each model the best chance to succeed, a variety of classifiers were 
tested for each training set—logistic regression, k-nearest neighbours, 
support vector machines, decision trees, random forests and Gaussian 
naive Bayes—and the best-performing classifier for each training 
set was considered. A detailed analysis of the results is presented in 
Supplementary Tables 8–21, and summarized in Extended Data 
Table 2. The best classifier trained on the human-selected dataset was 
the k-nearest neighbours (k = 2) with an accuracy of 69% and an area 
under the curve (AUC) of 0.64 on the held-out test set. The best clas-
sifier trained by the randomly generated training set was the k-nearest 
neighbours (k = 5) with an accuracy of 79% and an AUC of 0.80. Thus, 
the randomly generated training set outperforms the human-selected 
set by all metrics, despite containing 20% fewer reactions. Both models 
have access to the same classifier functions, so this indicates that the 
performance of the held-out test set is more effectively predicted by the 
randomly generated set than by the human-selected set.

The improved sampling over the feature space is established by con-
sidering the average nearest-neighbour distance between reactions 
(Extended Data Fig. 4). The average distance to the kth nearest neigh-
bour within a given training set is greater for the randomly generated 
training set for all k > 10, indicating that it more comprehensively 
samples the chemical space. Furthermore, the average distance from 
an experiment in the training set to the kth nearest neighbour in the 
test set is smaller for the randomly generated training set for all k ≤ 60, 
indicating that it allows better generalization to the test set. Both factors 
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Fig. 2 | Distribution of the choices of reaction parameters and reaction 
outcomes. a, b, The distributions of the reaction parameters for the pH 
of the reaction by probability (a) and the amine quantity in millimoles 
by probability density (b). In both a and b, blue indicates the distribution 
of the human-selected reactions taken from a historical dataset of 557 
reactions, the grey region indicates the triangular distribution defined 
for generating our random experiments, and the orange indicates the 
distribution of the 548 random reactions performed in this study. c, d, The 
distributions of the reaction outcomes based on the pH of the reaction 
(c) and the amine quantity (d). For the randomly generated reactions 
performed in this study, successful reaction outcomes (outcome 4) are 
indicated by green and failures (outcomes 1, 2 and 3) are indicated by red.
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popular amines and not-popular (unpopular and absent) amines.  
a, The proportion by outcome for each reaction, using the outcome scale 
described in Methods, for the popular and not-popular amines in the 
human-selected dataset. b, Estimated probability of observing at least one 
successful reaction (outcome 4) or failure (outcomes 1, 2 and 3) for a given 
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the human-selected dataset. Centre values indicate observed proportion 
of outcomes. Error bars indicate a bootstrap estimate of the standard 
deviation.
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help to make the randomly generated experiments more informative 
than those performed under human-selected conditions.

Anthropogenic dataset bias obscures chemical insights. Because the 
two training sets contain the same amines, the dependence of reac-
tion outcomes on features of the amines such as their structure and 
physicochemistry should be equally well described. Indeed, the direct 
influence of the features—that is, the contribution of a feature to the 
difference between the given predictions and a mean result35—is com-
parable for the models built on the different training sets. By contrast, 
the indirect influence of the features—which is estimated by computing 
the degradation in model accuracy when the ability of the model to 
predict that feature from the other features is removed35—is linearly 
correlated for the two training sets, with the exception of six features 
describing the properties of the amine: solvent-accessible polar surface 
area, presence of carbon aliphatic and aromatic rings, number of rotat-
able and total bonds, and presence of amidine moieties in the organic 
molecules (Extended Data Fig. 5). Computationally obscuring these 
features in the random-reaction-trained model degrades the model 
performance, but computationally obscuring them in the human-re-
action-trained (anthropogenic) model does not, because the anthro-
pogenic selection of reaction conditions has implicitly obscured these 
feature contributions.

Anthropogenic bias hinders the discovery of new materials. Only 
41 out of 110 test reactions successfully produced a crystalline product 
of sufficient quality and size (outcome 4), and the positive recall scores 
were 46% and 85% for the models trained on human-selected and ran-
domly generated data, respectively (Supplementary Tables 9, 17). The 
two models disagree in 23 out of 110 test outcomes, and in every case 
the human model predicts failure and the random model predicts suc-
cess. The ‘pessimism’ of the former is consistent with loss-aversion bias 
in human experimental choices1. When the models disagree, it is pref-
erable to trust the model trained on randomly generated data (which 
correctly predicts 16 true positives) rather than the model trained on 
human data (which correctly predicts 7 true negatives). Furthermore, 
only 7 out of 11 amines in the test set had at least one successful reaction 
outcome sufficient for discovery of a new material. The anthropogenic 
model failed to identify two of these compounds, whereas the ran-
dom-data model found at least one successful reaction for all seven 
compounds. Therefore, models trained on the randomly generated 
dataset are both quantitatively and qualitatively better at identifying 
the successful reaction conditions that are required for the discovery 
of new compounds.

Models trained on anthropogenic data select new experiments less 
effectively. We generated 10,000 sets of random reaction conditions for 
each of the 11 test amines. Predictions of reaction success by the two 
models agree on 81% of these reactions, including all of the generated 
reactions for 3 out of the 11 amines. For the eight amines for which the 
models disagree about the outcome of any of the 10,000 experiments, 
the anthropogenic model makes unique predictions of success for only 
two out of these eight amines, whereas the model trained on randomly 
generated data identifies unique positive predictions for all eight cases. 
As an additional test, we then conducted laboratory syntheses of ten 
discrepant positive predictions made by each model for each amine 
(totalling 100 additional reactions), selected from the 10,000 random 
conditions. For the two amines for which both models made different 
positive predictions, the anthropogenic model was slightly more suc-
cessful (16 out of 20 positives found) than the model trained on ran-
dom experiments (12 out of 20). However, for the other six amines, for 
which only the random-data model made unique positive predictions, 
at least one successful reaction was observed in all cases. The relatively 
low aggregate precision (43%) is because these are more speculative 
reactions for which the models are less confident about the outcome; 
the precision increases with the model’s predicted probability of suc-
cess and is as high as 80%. (Extended Data Table 4, Supplementary 
Table 22 and Supplementary Figs. 1, 2 contain a complete analysis 
of the laboratory and computational results.) This confirms that the 
model trained on data that does not contain anthropogenic bias better 

identifies reaction success over a broader range of reactant and reaction 
condition choices.

Our results indicate the importance of including reactions that 
humans ordinarily do not choose when constructing machine-learn-
ing models for chemical reactions. The implicit anthropogenic biases 
in the scientific literature may hinder data-driven chemical synthesis 
planning efforts5–7. To avoid this bias, we recommend a simple process 
of listing all experimental options, defining distributions that exclude 
impossible choices (on the basis of known physical considerations such 
as solubility or protonation state) or practically infeasible choices (for 
example, costs and safety), and then randomly sampling from those 
distributions. Our results indicate that experiments with this type of 
structured randomness remove anthropogenic bias, are at least as suc-
cessful as human choices, and greatly improve the value of the resulting 
datasets for reaction outcome prediction.
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Methods
Data capture. Data capture from historical notebooks, generated in our labora-
tory during the previous decade, and from the new experiments conducted in 
this study follows the procedure described in our previous work6. These reactions 
include compositional information (reactant identities and quantities), category 
(organic, inorganic or solvent), reaction conditions (for example, pH, temperature 
and time), and the reaction outcome information. Reaction outcomes were coded 
qualitatively on the basis of crystal size: 1 for no solid product, 2 for an amorphous 
solid, 3 for a polycrystalline sample or 4 for single crystals with average crystallite 
dimensions exceeding approximately 0.01 mm. (This size corresponds to the gen-
eral requirements for standard single-crystal X-ray diffraction data collection.) To 
eliminate measurement bias, the students who performed the reactions and scored 
the crystal outcomes were unaware of the popularity of the reagent in the CSD. A 
machine-readable collection of all experimental data are provided in the supple-
mentary information files.
Analysis of published crystal structures. Amine-templated metal oxides were 
extracted from the CSD36 (using the software Conquest) by stipulating both 
inclusion and exclusion criteria. The inclusion criteria were used to guarantee the 
presence of an oxide, metal oxide or metal borate substructure, in addition to an 
organic amine. The exclusion criteria were used to remove structures with bonding 
motifs that fell outside the target family of compounds. (These criteria are defined 
in Extended Data Table 1.) This resulted in the identification of 7,630 oxides, 4,870 
metal oxides and 115 metal borates. Analysis of the metal oxide data is presented 
in this Letter; a parallel analysis of the metal borates is described in Extended 
Data Fig. 1. We initially attempted to extract the organic components from the 
three-dimensional structure, but the presence of structural disorder resulted in 
ambiguity. The two-dimensional structure diagrams are not publicly available 
through the CSD application programming interface. Therefore, we parsed the sys-
tematic names to identify the amine component. Excluded names were manually 
curated, and 43 typographical errors in the CSD entries were communicated to the 
maintainers. A strict definition of organic amines was used, which included only 
molecules comprising solely C, H and N, and containing no nitriles or azo, diazo, 
or diazonium functional groups. After performing these exclusions, 6,458 oxides, 
4,152 metal oxides, and 109 metal borate structures remained. The amine names 
were resolved to canonical SMILES strings using the CACTUS Chemical Identity 
Resolver (https://cactus.nci.nih.gov/chemical/structure), and then converted  
to neutral molecules and canonicalized using RDKit37. CACTUS was also used 
to generate InChI and InChIKey strings. The Python-based Jupyter notebooks 
used to perform this process, along with the inputs and intermediate outputs, are 
provided in the supplementary information files.

Amine popularity was quantified using the Pareto split, the value of X where the 
top X% of most frequently observed amines accounts for 100% − X% of the total 
structures. This choice has joint ratio symmetry, that is, the remaining 100% − X% 
of the least frequently observed amines account for the remaining X% of structures. 
Structures containing multiple amines preclude a precisely equal X:100 − X ratio 
for a finite dataset, so the largest X that does not exceed the ratio is used. Pareto 
split values for the 4,152 metal oxide structures and the 109 metal borate struc-
tures are indicated by the shaded areas in Fig. 1and Extended Data Fig. 1, respec-
tively. Using the metal oxide dataset, amines were classified as ‘popular’ if they 
were in the over-represented top X% of amines, and ‘unpopular’ if in the under- 
represented bottom 100% − X% of amines, ‘absent’ if not reported in the CSD at 
all, and ‘not-popular’ if either unpopular or absent.
Pricing and availability. Amine pricing information was collected by searching 
the Sigma-Aldrich website (https://www.sigmaaldrich.com) in November 2018. 
Pricing and sample-size data were collected for the smallest sample size available, 
where the sample size was at least 5 g. Pricing data were collected for all amines 
included in the training reactions and the test set amines. All amines were in stock 
on the day data were collected.
Generation of randomized reactions. The randomized reactions were generated 
by sampling from triangular distributions for the reaction pH and amine quantity. 
The triangular distribution for pH was chosen with minimum and maximum 
values of 1 and 8.49, and a mode of pH 8; random numbers were drawn from this 
distribution and then rounded to the nearest integer. (The pH of a reaction is not 
easily set below 0 and basic conditions will not protonate an amine.) The trian-
gular distribution for amine quantity was chosen with minimum and maximum 
values of 0.5 mmol and 10 mmol, with a mode of 5 mmol. (The amine quantity 
cannot be reduced below zero and cannot be increased above a conservative sol-
ubility limit chosen for all amines.) Conversion of the amine molar quantities to 
masses was performed using molecular weights from PubChem. The Mathematica 
notebook used to perform these calculations is provided in the supplementary 
information files.
Hydrothermal synthesis. All reactions were conducted under mild hydrothermal 
conditions in 23-ml poly(fluoroethylene-propylene)-lined pressure vessels. All 
reactions were specified for 0.31 g H3BO3, 0.083 g VOSO4·xH2O and 6.0 g H2O, and 

the amine quantity in mmol was drawn from the previously described distribution. 
The reactions were adjusted to the pH specified by the above distribution using 
either 4 M HCl or 4 M NaOH (as determined by pH paper). Reaction mixtures 
were heated to 90 °C for 24 h. Pressure vessels were opened in air after the reaction 
and products were recovered through filtration. Objective metrics (measured crys-
tallite size and powder X-ray diffraction) were used to score reaction outcomes, as 
described in the above section ‘Data capture’.
Statistical analysis of experimental outcomes. Standard deviations and P values 
were assigned by numerical 10,000-sample bootstrapping and permutation. The 
Mathematica notebook used to perform these calculations is provided in the sup-
plementary information files. No statistical methods were used to predetermine 
experimental sample size.
Machine-learning model construction. Only a single set of inorganic reactants 
was used for all reactions in this study, and only a single organic reactant per 
reaction was used. Therefore, only a subset of the reaction descriptors from our 
previous work6 was used in this study. These three descriptor categories include 
reaction parameters (for example, temperature and pH), physicochemical and 
structural features of the organic component, and stoichiometric ratios. The struc-
tural and physicochemical properties of the organic species were computed using 
RDKit 2018.03.4 (ref. 37) and the ChemAxon Calculator plugins38. Supplementary 
Tables 1–7 contain a complete description of the features.

Feature selection was performed to choose the top 5, 10, and 20 features for 
both training sets, using two methods: an F-test-based estimate and a mutual-in-
formation-based estimate of the importance of each feature. Two additional sets, 
one containing all features and one containing all features with positive variance 
were also considered. The full set of considered models was trained on each of 
these feature sets for both the human-selected and randomly generated training 
sets. As described in the main text, the full feature set had the top performance 
model based on accuracy. A five-feature F-test-based feature set had the highest 
AUC (0.69), but had lower accuracy (0.63) than the set with all features. In general, 
the human-data-trained models performed very poorly; many had an accuracy of 
around 0.5. The full results of the feature selection trials can be found in Extended 
Data Table 3. All models were implemented in Python 3.7.3 using Scikit-learn 
version 0.19.1(ref. 39); model-specific details and implementations can be found 
in the supplementary information files.
Direct and indirect feature influence analysis. The direct influence of each fea-
ture—a Shapely-value-based approximation of the contribution of a feature to the 
deviation of predictions from the mean—was computed using SHapley Additive 
exPlanations (SHAP, specifically the Kernel SHAP approximation)40,41. The indi-
rect influence of each feature was calculated using BlackBoxAuditing35,42 to meas-
ure each feature’s contribution to the accuracy of the model even when it is not 
directly used in the model. This influence is estimated by obscuring a feature so 
that it cannot be predicted by the other features and measuring the drop in model 
accuracy when the values are obscured in this way. These calculations were per-
formed for the most accurate models trained on the human-selected and randomly 
generated training sets. Comparison plots are shown in Extended Data Fig. 5.
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Code availability
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Extended Data Fig. 1 | Cambridge Structural Database (CSD) search 
results for templated metals borates. a, A plot of the number of unique 
structures for each amine, ordered from the amine with the fewest 

structures to the most. b, A plot of cumulative probability versus amine 
proportion. The grey rectangle represents the Pareto split.



Letter RESEARCH

Extended Data Fig. 2 | Amine price and availability. a, Amine price 
versus quantity for the randomized reaction amines. The data are 
separated by amine popularity (popular, unpopular or absent). Amines 
used in the test set experiments are also included. b, Amine pricing 
information for those used in the randomized reactions. The price per 
gram was calculated assuming amine densities of 1 g ml−1. The data 

presented in the figures above suggest that there is no systematic difference 
in amine prices between the popular, unpopular and absent amines. 
Additionally, the distribution of amine pricing for the test set amines is 
similar to the other distributions, suggesting a representative sample of 
amines.
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Extended Data Fig. 3 | Outcome probabilities for not-popular, 
unpopular and absent organic amines. The not-popular set includes the 
unpopular and absent amines.
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Extended Data Fig. 4 | Average nearest-neighbour distances in the 
datasets, and nearest-neighbour choices on model performance.  
a, Average distances to the kth nearest neighbour within each training set. 

b, Average distances from each training set to the kth nearest neighbour 
within the test set. c, AUC for the kth nearest neighbour classifier for k = 1 
to 100.
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Extended Data Fig. 5 | Comparison of the influence of direct and 
indirect features. a, Direct influence values of descriptors in the human 
reaction test set versus the random reaction test set. b, Indirect influence 

values of descriptors in the human reaction test set versus the random 
reaction test set.
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Extended Data Table 1 | Structure inclusion and exclusion criteria

Structures were identified in the Cambridge Structure Database (CSD) using a combination of inclusion and exclusion criteria. The inclusion criteria, shown above, were created to be inclusive but to 
still return appropriate structure. Bond orders were left unspecified to avoid unintended exclusions. The labels ‘X’ and ‘4M’ represent ‘any atom type’ and ‘any metal’, respectively. The three exclusion 
groups were constructed to exclude more complex structures in the organic amines and bonding to the metal centres through atoms other than oxygen. The structures in each compound class 
(oxides, metal oxides and metal borates) were identified by conducting three distinct searches, each of which included the inclusion group and one of the exclusion groups. The resulting three datasets 
were merged so that only the structures present in all three datasets were retained.
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Extended Data Table 2 | Matthews correlation coefficient (MCC), accuracy and AUC results for each machine-learning algorithm, trained on 
either the human-selected or randomly generated reaction data using all features
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Extended Data Table 3 | Feature selection comparison

ANOVA F-values for the human-generated and randomized reaction test sets.
a, Top 5 features. b, Top 10 features. c, Top 20 features.
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Extended Data Table 4 | Comparison of discrepancies between model predictions and reaction outcomes

Ten thousand random reactions were generated for each amine. The first column in Extended Data Table 4 indicates the number of discrepancies between the predictions of the two models. Subse-
quent columns show the number of those discrepancies predicted to be positive by the respective model (top line); of these positive predictions the ten reactions with the lowest model uncertainty 
were selected and performed in the laboratory. Successful outcomes are indicated as a fraction in parentheses (number of successful reactions out of total number of trials). For amines where no 
positive predictions were made, no tests were performed, indicated by (—).
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