
Auditing Black-box Models for Indirect Influence
Philip Adler∗, Casey Falk∗, Sorelle A. Friedler∗, Gabriel Rybeck∗,

Carlos Scheidegger†, Brandon Smith∗, and Suresh Venkatasubramanian‡
∗ Dept. of Computer Science, Haverford College, Haverford, PA, USA

padler1@haverford.edu, caseyfalk94@gmail.com, sorelle@cs.haverford.edu, grybeck@gmail.com, bsmith8108@gmail.com
† Dept. of Computer Science, University of Arizona, Tucson, AZ, USA

cscheid@cscheid.net
‡ Dept. of Computer Science, University of Utah, Salt Lake City, UT, USA

suresh@cs.utah.edu

Abstract—Data-trained predictive models see widespread use,
but for the most part they are used as black boxes which output
a prediction or score. It is therefore hard to acquire a deeper
understanding of model behavior, and in particular how different
features influence the model prediction. This is important when
interpreting the behavior of complex models, or asserting that
certain problematic attributes (like race or gender) are not unduly
influencing decisions.

In this paper, we present a technique for auditing black-box
models, which lets us study the extent to which existing models
take advantage of particular features in the dataset, without
knowing how the models work. Our work focuses on the problem
of indirect influence: how some features might indirectly influence
outcomes via other, related features. As a result, we can find
attribute influences even in cases where, upon further direct
examination of the model, the attribute is not referred to by the
model at all.

Our approach does not require the black-box model to be
retrained. This is important if (for example) the model is only
accessible via an API, and contrasts our work with other methods
that investigate feature influence like feature selection. We present
experimental evidence for the effectiveness of our procedure
using a variety of publicly available datasets and models. We
also validate our procedure using techniques from interpretable
learning and feature selection, as well as against other black-box
auditing procedures.

I. INTRODUCTION

Machine-learning models now determine and control an
increasing number of real-world decisions, from sentencing
guidelines and parole hearings [2] to predicting the outcome
of chemical experiments [20]. These models, powerful as they
are, tend to also be opaque. This presents a challenge. How
can we audit such models to understand why they make certain
decisions? As conscientious model creators, we should want to
know the extent to which a specific feature contributes to the
accuracy of a model. As outside auditors, trying to understand
a system can give us an understanding of the model’s priorities
and how it is influenced by certain features. This may even
have legal ramifications: by law for example, decisions about
hiring cannot be influenced by factors like race, gender or age.

As model creators, we could build interpretable models,
either by explicitly using interpretable structures like decision
trees, or by building shadow models that match model outputs

This research was funded in part by the NSF under grants IIS-1251049,
CNS-1302688, IIS-1513651, DMR-1307801, IIS-1633724, and IIS-1633387.

in an interpretable way. In this work, we are interested in
auditing a black box model from the outside (because the
model is proprietary, accessible only through an API, or cannot
be modified).

A. Direct and Indirect Influence

Much of the modern literature on black-box auditing (See
Section II for details) focuses on what we call direct influence:
how does a feature (or a group of features) directly affect the
outcome? This is quantified by replacing the feature (or group)
by random noise and testing how model accuracy deteriorates.
In this paper, we focus on the different and more subtle issue
of indirect influence.

Consider trying to verify that racial considerations did not
affect an automated decision to grant a housing loan. We could
use a standard auditing procedure that declares that the race
attribute does not have an undue influence over the results
returned by the algorithm. Yet this may be insufficient. In the
classic case of redlining [17], the decision-making process
explicitly excluded race, but it used zipcode, which in a
segregated environment is strongly linked to race. Here, race
had an indirect influence on the outcome via the zipcode, which
acts as a proxy.

Note that in this setting, race would not be seen as having a
direct influence (because removing it doesn’t remove the signal
that it provides). Removing both race and zipcode jointly (as
some methods propose to do) reveals their combined influence,
but also eliminates other task-specific value that the zipcode
might signal independent of race, as well as leaving unanswered
the problem of other features that race might exert indirect
(and partial) influence through.

B. Our Work

In this paper, we study the problem of auditing black box
models for indirect influence. In order to do this, we must find
a way to capture information flow from one feature to another.
We take a learning-theoretic perspective on this problem, which
can be summarized via the principle, first enunciated in [10]
in the context of certifying and removing bias in classifiers:

the information content of a feature can be estimated
by trying to predict it from the remaining features.

How does this allow us to correctly quantify the influence of
a feature in the presence of proxies? Let us minimally modify
the data so that the feature can no longer be predicted from
the remaining data. The above principle then argues that we
have fully eliminated the influence of this feature, both directly
and in any proxy variables that might exist. If we now test
our model with this obscured data set, any resulting drop in
prediction accuracy can be attributed directly to information
from the eliminated feature.

Our main contributions in this work include
• A technique to obscure (fully and partially) the influence

of a feature on an outcome, and a theoretical justification
of this approach.

• A method for quantifying indirect influence based on a
differential analysis of feature influence before and after
obscuring.

• An experimental validation of our approach on a number
of public data sets, using a variety of models.

II. CONCEPTUAL CONTEXT

Work on black-box auditing intersects with a number of
related areas in machine learning (and computer science at
large), including directions coming from privacy preservation,
security, interpretability, and feature selection. We tease out
these connections in more detail in Section VII.

Here we outline how we see our work in the specific
context of the prior literature on auditing black box machine
learning models. Modern developments in this area can be
traced back to Breiman’s work on random forests [4], and
we highlight two specific recent related works. Henelius et
al. [13] propose looking at variable sets and their influence
by studying the consistency of a black-box predictor when
compared to a random permutation of a set. Datta et al.
[8] provide a generalization of this idea, linking it to game-
theoretic notions of influence and showing that different choices
of probability spaces and random variables yield a number
of different interesting auditing measures. These two papers
fundamentally hinge on the notion of associating each input
value with an intervention distribution. These intervention
distributions can be easily shown (in distribution) to obscure
attributes. Our work, on the other hand, will audit black boxes
by providing, for any given input point, an intervention that
is deterministic, while guaranteeing (in some settings, see
Section IV-C) that the attributes are still obscured over the
entire distribution. Our intervention preserves more of the signal
in the dataset, and – crucially in some settings – naturally
preserves indirect influences of proxy variables. As we will
show in the experiments (see Section V-D), the technique of
Henelius et al. cannot detect proxy variables, and although
Datta et al. can use some of their measures to detect proxy
variables, their attribute rankings generally do not reflect the
proxy relationships.

Our methods draw heavily on ideas from the area of
algorithmic fairness. The process by which we eliminate the
influence of a feature uses ideas from earlier work on testing
for disparate impact [10]. Again, a key difference is that we no

longer have the ability to retrain the model, and we quantify
the influence of a feature rather than merely eliminating its
influence.

III. INDIRECT INFLUENCE

Let f : X→ Y be a black-box classification function, where
X ⊂ X(1) × X(2) . . .X(d) is a d-dimensional feature space
with the ith coordinate drawn from the domain X(i) and
Y is the domain of outcomes. For example, X = Rd and
Y = {−1, 1} for binary classification on Euclidean vectors.
Fix a data set (X,Y) = {(Xi, yi)} ⊂ X × Y, 1 ≤ i ≤ n
and let Xi = (xi1, xi2, . . . , xid), where xij ∈ Xj for all
i. We denote the accuracy of prediction as acc(X,Y, f).
For example, acc(X,Y, f) = 1

n

∑
1yi 6=f(Xi) is the standard

misclassification error.
We wish to quantify the indirect influence of a feature j on

the outcome of classification. The typical approach to doing this
in the auditing literature is to perturb the jth feature xij of each
Xi in some way (usually by random perturbation), obtaining
a modified data set X−j . Then the influence of j can be
quantified by measuring the difference between acc(X,Y, f)
and acc(X−j , Y, f) (note that f is not retrained on X−j).

Unfortunately, randomly perturbing features can disrupt
indirect influence in a number of ways. Firstly, random
perturbations could also remove useful task-related information
in proxy features that would degrade the quality of classification.
Secondly, this prevents us from cleanly quantifying the relative
effect of the feature being perturbed on related proxy variables.

We propose a different approach. We will still perturb a
data set X to eliminate the direct and indirect influence of
feature j, and measure the change in accuracy of prediction
as before. However, we will do this perturbation in a directed
and deterministic manner, organized around the question:
“can we predict the value of feature j from the remaining
features?” Intuitively, if we cannot, then we know that we have
correctly eliminated the influence of j. Moreover, if we do
this perturbation “minimally,” then we have changed the data
as little as possible in the process. We will say in this case
that we have removed feature j from the data set and have
obscured its influence on X .

A. Obscuring data with respect to a feature

We start by defining the error measure we will use to test
predictability. Rather than the standard misclassification rate,
we will use the well-known balanced error rate measure that is
more sensitive to class imbalance. This is important if a feature
has significant skew in the values it takes. Let supp(Y) = {y ∈
Y|y ∈ Y } be the set of elements of Y that appear in the data.

Definition III.1 (BER). Let f : X → Y be a classifier, and
let (X,Y) = {(Xi, yi)} be a set of examples. The balanced
error rate BER of f on (X,Y) is the (unweighted) average
class-conditioned error of f :

BER(X,Y, f) =
1

|supp(Y)|

 ∑
j∈supp(Y)

∑
yi=j

1f(Xi) 6=j

|{i | yi = j}|



A feature i has been removed from a data set if we can no
longer predict that feature from the remaining data. This moti-
vates the following definition. Let X(i) = (x1i, x2i, . . . , xni)
denote the column corresponding to the ith feature.

Definition III.2 (ε-obscure). We define X\εXi as the ε-obscure
version of X with respect to feature Xi if X(i) cannot be
predicted from X\εXi. I.e., if, for all functions f : X\Xi → Xi,

BER(X \ε Xi, X(i), f) > ε

We can now define a measure of influence for a feature.

Definition III.3 ((indirect) influence). The indirect influence
II(i) of a feature i on a classifier f applied to data (X,Y) is
the difference in accuracy when f is run on X versus when it
is run on X \ε Xi:

II(i) = acc(X,Y, f)− acc(X \ε Xi, Y, f)

Notes The definition of obscurity we use here is adapted from
[10], but applied to any feature, rather than just “protected”
ones. In what follows, we will typically treat ε as large (say
above 0.5 for binary classification).

IV. COMPUTING INFLUENCE

In this section, we will introduce a method we call gradient
feature auditing (GFA) to estimate indirect influence. Using
it, we compute the influence of each feature of the data and
order the features based on their influence. This GFA algorithm
works feature-by-feature: in order to compute X\εXi, we apply
an obscuring procedure to each feature j 6= i in X. Because
we operate one feature at a time, we cannot guarantee that all
influence can be removed (and therefore estimated). However,
we will show that the feature-level procedure is theoretically
sound and in fact generalizes the standard ANOVA test for
null hypothesis testing.

Let us start with a simple case: when the feature W = Xj
to be obscured is numerical, and the feature O = Xi we are
removing is categorical. Let Wx = Pr(W | O = x) denote the
marginal distribution on W conditioned on O = x and let the
cumulative distribution be Fx(w) = Pr(W ≥ w | O = x).

Define the median distribution A such that its cumulative
distribution FA is given by F−1A (u) = medianx∈OF−1x (u) . In
[10] it was shown that if we modify the distribution of W
to match A by “moving” values of W so as to mimic the
distribution given by A, then O is maximally obscured, but W
also minimally changes, in that A also minimizes the function∑
x∈O d(Wx, A) where d(·, ·) was the earthmover distance

[23] between the distributions using `2 as the base metric. We
call this procedure ObscureNumerical.

This procedure does not work if features to be obscured and
removed are not numerical and categorical respectively. We
now describe procedures to address this issue.

A. Removing numerical features

In order to remove a numerical feature, we must first
determine what aspects of the number itself should be removed.
In an optimal setting, we might remove the entirety of the

number by considering its binary expansion and ensuring that
no bit was recoverable. However, when working with most
numerical data, we can safely assume that only the higher
order bits of a number should be removed. For example, when
considering measurements of scientific phenomena, the lower
order bits are often measurement error.

Thus, we bin the numerical feature and use the bins
as categorical labels in the previously described obscuring
procedure. Bins are chosen using the Freedman-Diaconis rule
for choosing histogram bin sizes [11].

B. Obscuring categorical features

Our procedure relies on being able to compute cumulative
density functions for the feature W being obscured. If it is
categorical, we no longer have an ordered domain on which
to define the cumulative distributions Fw. However, we do
have a base metric: the exact metric 1 where 1(x,w) =
1 ⇐⇒ x = w. We can therefore define A as before,
as the distribution minimizing the function

∑
x∈O d(Wx, A).

We observe that the earthmover distance between any two
distributions over the exact metric has a particularly simple
form. Let p(w), q(w), w ∈ W,

∑
p(w) =

∑
q(w) = 1

be two distributions over W . Then the earthmover distance
between p and q with respect to the exact metric 1 is given
by d(p, q) = ‖p − q‖1 Therefore the desired minimizer A
can be found by taking a component-wise median for each
value w. In other words, A is the distribution such that
pA(w) = medianwWx(w). Once such an A has been computed,
we can find the exact repair by computing the earthmover
distance (via min-cost flows)1 between each Wx and A. This
results in fewer changes than merely changing values arbitrarily.

We must create the obscured version of W , denoted Ŵ . Let
Ŵw,x be the partition of Ŵ where the value of the obscured
feature is w and the value of the removed feature is x. We must
create Ŵ so as to ensure that |{Ŵ |O = x}| ∈ Z for all values
of x ∈ O. We set |Ŵw,x| = bpA(w) · |{W |O = x}|c. Letting
d(w) = |Ŵw,x| for all w ∈W gives the node demands for the
circulation problem between Wx and A, where supplies are
set to the original counts d(w) = −|Ww,x|. Since |Ŵw,x| ≤
|Ww,x|, an additional lost observations node with demand
|Ww,x| − |Ŵw,x| is also added. The flow solution describes
how to distribute observations at a per category, per obscured
feature value level. Individual observations within these per
category, per feature buckets can be distributed arbitrarily.
The observations that flow to the lost observations node are
distributed randomly according to distribution A. We call this
procedure ObscureCategorical.

Using the categorical or numerical obscuring procedure
appropriately depending on the data yields our procedure for
computing X \ε Xi.
Notes. This description assumes that we want to remove all
effects of a variable in order to measure its influence. However,
how the influence changes as we remove its effect is also

1This is a straightforward application of the standard min-cost flow problem;
we defer a detailed description to the full version of this paper.

interesting. Indeed, this is why we we refer to the overall
process as a gradient feature audit. To that end, all of the
algorithms above can be adapted to allow for a partial removal
of a variable. On a scale of 0 to 1 where 0 represents the
original data, and 1 represents a full removal, we can remove
a fractional part of the influence by allowing the individual
conditional distributions to move partly towards each other.

While the process above produces a score, the induced
ranking is also useful, especially when we compare our results
to those produced by other auditing methods, where the score
itself might not be directly meaningful. We illustrate this further
in Section V.

C. Obscuring, ANOVA, and the F -test

We now provide a theoretical justification for our obscuring
procedure. Specifically, we show that if the feature W being
obscured has Gaussian conditionals, then our obscuring pro-
cedure will create a data set on which the F-test [6] will fail,
which means that the null hypothesis (that the conditionals are
now identical) will not be invalidated. Thus, our procedure can
be viewed as a generalization of ANOVA.

Consider a data set D consisting of samples (x, y), where y
is a class label that takes the values −1, 1 and the x are drawn
from univariate Gaussians with different means and a shared
variance. Specifically, Pr(x|y = i) = N (vi, σ

2). We assume
the classes are balanced: Pr(y = −1) = Pr(y = 1).

Let x̃ be the obscured version of x. It is easy to show
that2, in this case, the obscuring procedure will produce values
following the distribution p(x̃|y = i) = N (1/2(v−1+v1), σ

2).
We apply the F -test to see if we can tell apart the two

conditional distributions for the two different values of y. Let
Sy = {x | (x, y) ∈ D}. The test statistic F is the ratio of
the between-group sample variance and the in-group sample
variance. Set µ = (v−1+v1)/2 and δ = (µ−v−1)2 = (µ−v1)2.
Thus

F =
nδ

(1/2)
∑
x∈S−1

(x− v−1)2 +
∑
x∈S1

(x− v1)2

We note that
∑
x∈S1

(x − v1)2 has expectation n/2σ2, (and
so does the corresponding expression related to S−1). Using
the plug-in principle, we arrive at an estimator for the F
statistic: F = δ

σ2 This is the traditional expression for a two-
variable, one-way ANOVA: δ is a measure of the variance that
is explained by the group, and σ2 is the unexplained variance.

We apply this to the obscured distribution. From the remarks
above, we know that the conditional distributions for y = 0, 1
are identical Gaussians N(µ, σ). We now show that the positive
parameter δ is concentrated near zero as the number of samples
increases.

Let x1, . . . , xn be samples drawn from the conditional
distribution for y = 0, and similarly let y1, . . . , yn be drawn
from the distribution conditioned on y = 1. Set X = 1

n

∑
xi

2This follows from the fact that the earthmover distance between two
distributions on the line is the `1 difference between their cumulative density
functions. In this case it means that the earthmover distance is precisely the
distance between the means.

and Y = 1
n

∑
yi. Note that E[X] = E[Y] = µ, and so

E[X − Y] = 0.
Let δ̂ = (X − Y)2. We first observe that

|X − Y | ≤ |X − E[X]|+ |E[X]− E[Y]|+ |Y − E[Y]|
= 2|X − E[X]|

because X and Y are identically distributed. Therefore,

Pr(δ̂ ≥ ε2) ≤ 4Pr(|X − E[X]|2 ≥ ε2)
≤ 4 exp(−nε2/2σ2)

by standard Hoeffding tail bounds [18]. Therefore, with
log n/ε2 samples, the F -test statistic is with high probability
less than ε2, and thus the null hypothesis (that the distributions
are identical) will not be invalidated (which is equivalent to
saying that the test cannot distinguish the two conditional
distributions).

V. EXPERIMENTS

In order to evaluate the introduced gradient feature auditing
(GFA) algorithm, we consider experiments on five data sets,
chosen to balance easy replicability with demonstration on
domains where these techniques are of practical interest.
Datasets and GFA code are available online.3

Synthetic data. We generated 6, 000 items with 3, 000 assigned
to each of two classes. Items have five features. Three features
directly encode the row number i: feature A is i, B is 2i, and
C is −i. There is also a random feature and a constant feature.
We use a random 2

3 : 1
3 training-test split.

Adult Income and German Credit data. We consider two
commonly used data sets from the UC Irvine machine learning
repository4. The first is the Adult Income data set consisting
of 48,842 people, each with 14 descriptive attributes from the
US census and a classification of that person as making more
or less than $50,000 per year. We use the training / test split
given in the original data. The second is the German Credit
data set consisting of 1000 people, each with 20 descriptive
attributes and a classification as having good or bad credit. We
use a random 2

3 : 1
3 training-test split on this data and the two

data sets described below.
Recidivism data. The Recidivism Prediction data set is taken
from the National Archive of Criminal Justice Data5 and
contains information on 38,624 prisoners sampled from those
released from 15 states in 1994 and tracked for three years.
The full data includes attributes describing the entirety of
the prisoners’ criminal histories before and after release as
well as demographic data. For this work, we processed the
data additionally following the description of the processing
performed in a previous study on interpretable models [29].
This processing resulted in 10 categorical attributes. The
prediction problem considered is that of determining whether
a released prisoner will be rearrested within three years.

3https://github.com/cfalk/BlackBoxAuditing
4https://archive.ics.uci.edu/ml/datasets.html
5http://doi.org/10.3886/ICPSR03355.v8

Dark Reactions data. The Dark Reactions data [20] is a
set of 3, 955 historical hydrothermal synthesis experiments
aiming to produce inorganic-organic hybrid materials. 273
attributes indicate aggregates of atomic and ionic properties
of the inorganic components and semi-empirical properties of
the organic components. The classification variable indicates
whether the reaction produced an ionic crystal.
Models. We built two models that are notoriously opaque
to simple examination; SVMs6 [12] and feedforward neural
networks (FNNs).7 We also include C4.5 decision trees8 [19] so
that the audited results can be examined directly in comparison
to the models themselves.

The FNN on the synthetic data was trained using a softmax
input-layer for 100 epochs with a batch-size of 500 and a
learning-rate of 0.01; no hidden layer was involved. The Adult
Income FNN model was trained using a single softmax input-
layer for 1000 epochs using a batch-size of 300 and a learning-
rate of 0.01; no hidden layer was involved. The German Credit
data FNN model was trained similarly to the Adult model,
except using a batch-size of 700. The Dark Reaction data FNN
model was trained using tanh activations for the input layer
and softmax activations in a fully connected hidden layer
of 50 nodes; it was trained using a batch-size of 300 for 1500
epochs with a modified learning rate of 0.001. The Recidivism
data set FNN was trained using softmax activations on a
fully connected hidden layer of 100 nodes. The model was
trained using a batch size of 500 and 100 epochs.
Auditing using test data. Our claim in this work is that we
can obscure a data set with respect to a feature in order to test
its influence. To test this, we could also retrain our classifier
on obscured data and compare the resulting outcomes on test
data. We have run this experiment on the synthetic data and
found the resulting scores to be very similar, demonstrating
that even though our obscuring process applies after training,
it is still effective at removing the influence of a feature. We
defer detailed experiments to an extended version of this work.

A. Black-box feature auditing

We now assess the performance of our GFA method. We
trained each model on each of the five data sets. We then
ran GFA using the test data for each data set. As we noted
in Section IV, we progressively increase the degree to which
we obscure a data set by removing a variable. Specifically,
we used partial obscuring values at 0.1 intervals between 0
(no removal) and 1 (full removal) giving us 11 total partially
obscured data sets to consider the accuracy change for. Figure
1 shows the resulting GFA plots.
Synthetic data. Beginning with the synthetic data under any
of the models, we see that removing any one of the three main
features (A, B, and C) that encode the outcome class causes
the model to degrade to 50% accuracy as our approach would

6Implemented using Weka’s version 3.6.13 SMO: http://weka.sourceforge.
net/doc.dev/weka/classifiers/functions/SMO.html

7Implemented using TensorFlow version 0.6.0: https://www.tensorflow.org/
8Implemented using Weka’s version 3.6.13 J48: http://weka.sourceforge.net/

doc.dev/weka/classifiers/trees/J48.html

predict. Removing the constant feature has no effect on the
model’s accuracy, also as expected. The removal of the random
feature causing the model to lose a small amount of accuracy
may initially seem surprising, however this is also as expected
since the random feature also individually identifies each row
and so could be used to accurately train an overfitted model.
Adult income data. On the Adult income data set, we see that
the ranking changes depending on the model. Recall that the
more “important,” highly ranked features are those that cause
the accuracy to drop the most, i.e. are towards the bottom of
the charts. While race is found to have only a small influence
on all the models, the removal of age has a large impact
on the SVM and FNN models, but is much less important to
the decision tree. On the FNN model gradient auditing plot
we also see a set of features which when partially removed
actually increased the accuracy of the model. In a model that
was not optimal to begin with, partially obscuring a feature
may in effect reduce the noise of the feature and allow the
model to perform better.
German credit data. The results on the German credit data
exhibit an arbitrary or noisy ordering. We hypothesize that
poor models are likely to produce such auditing results. There
are two interrelated reasons why this may be the case. First,
since the audit assesses the importance of a feature using the
accuracy of the model, if the model is poor, the resolution of
the audit is degraded. Second, if the model is poor partially
due to overfitting, obscuring features could cause spurious and
arbitrary responses. In these contexts, it makes more sense to
consider the change in accuracy under a consistency measure.
We explore this further in Section V-B.
Recidivism data. On the Recidivism data we see incredible
consistency between the rankings of the different models. The
top three most important features under all three models are
PRIRCAT, a categorical representation of the number of prior
arrests of the prisoner, RLAGE, the age at release, and TMSRVC,
the time served before the release in 1994. The four least
important features are also common to all three models: the
sex of the prisoner, whether the prisoner is an alcohol or
drug abuser, and the number of infractions the prisoner was
disciplined for while incarcerated.
Dark Reactions data. The Dark Reactions data shows different
top ranked features for the three models, though all three
rankings include the minimum Pauling electronegativity and
the maximum Pearson electronegativity in the top ranked cluster
of features. These values are calculated for the inorganic
components of the reaction and have been shown to be
important for distinguishing between chemical systems in this
data set [20], which this audit confirms. Features indicating
the presence of elements and amounts of metal elements with
specific valence counts similarly allow the models to classify
chemical systems. The SVM and FNN top features include
atomic properties of the inorganics that are related to the
electronegativity of an element, so these proxies are correctly
also highly ranked. The top ranked decision tree features
additionally include the average molecular polarizability for
the organic components, which was previously hypothesized

Fig. 1. Obscurity vs. accuracy plots for each model and each data set considered. First column: C4.5 decision trees. Second column: SVMs. Third column:
FNNs. First row: Synthetic data. Second row: Adult income data set. Third row: German credit data. Fourth row: Recidivism data. Final row: Dark Reaction
data, shown without a feature legend due to the large number of features.

Fig. 2. Obscurity vs. consistency plots for the German Credit data. First column: decision tree model. Second column: SVM. Third column: FNN.

as important to synthesis of templated vanadium selenites
explored via this data set [20]. For all three models, the lowest
ranked descriptors are constants scored correctly as having no
influence to the model.
Running time. Running times for these experiments, including
time to train the model, time to do all partially obscured audits,
and time to write the partially obscured data sets to disk,
varied from 13 seconds on the synthetic data set with the C4.5
decision tree model to just over 3 hours for the Dark Reaction
data set with the FNN. Since one-time audits are not highly
time-sensitive tasks, and the code was unoptimized, we present
these times largely as evidence of the feasibility of this method.

B. Auditing for consistency

The results in Figure 1 allow us to both create a ranking of
influence as well as evaluate absolute accuracy of the model
on obscured data. However, the German Credit data set yields
very noisy results. To address this, we propose using model
consistency: we replace the original labels with those predicted
by the model on unobscured data, and then calculate accuracy as
we progressively obscure data with respect to these labels. The
unobscured data will thus always have a consistency of 100%.
The new gradient measured will be the difference between
the 100% consistency at obscurity of 0 and the degraded
consistency when fully obscured.

As can be seen in Figure 2, under the consistency measure
the accuracy of the German Credit model degrades smoothly so
that a ranking can be extracted. The slight noise remaining is
likely due to the final step of the categorical obscuring algorithm
that redistributes “lost observations” randomly. The resulting
ranking is fairly consistent across models, with credit
amount, checking status, and existing credits
ranked as the top three features in all models.

Similar to the German Credit data, the FNN model on the
Adult Income data set was not an optimal model. This means
that in the accuracy-based plots in Figure 1 obscuring the
features at first leads, counterintuitively, to an increase in accu-
racy. In the consistency graph for the FNN model on the Adult
Income data (see Figure 3) we see that while the ranking derived
from accuracy closely resembles the consistency ranking, a
cluster of features (native.country, capital.loss,
capital.gain, and hours.per.week) had been ranked
above occupation and marital.status and the consis-
tency ranking moves that cluster down in rank.

Fig. 3. Obscurity vs. consistency for Adult Income data modeled by an FNN.

C. Evaluating with respect to a direct influence audit

In order to determine if GFA is correctly determining the
indirect influence of a model, we will first develop a simple
method of detecting direct influence, and then examine the
outlying attributes for which our indirect audit differs.
Direct influence audit. The first step of the direct influence
audit method we will use is the creation of an interpretable
model of the model. By a “model of a model” we mean that
we should 1) train the model f on training data (X,Y), 2)
determine new labels Ŷ from the predicted outcomes f(X), and
3) overfit an interpretable model I(f) to these predicted labels
(as done in [3]). (This idea is similar to model compression,
but without the need to find new test data [5].) Assuming that
the model resulting from this procedure has high accuracy on
Ŷ , we now have an interpretable model of our model.

For the SVM and decision tree models trained on the each
of the five data sets, we trained an unpruned C4.5 decision
tree model of the model. With these interpretable models of
a model, unfortunately a manual comparison to the feature
ranking is still impossible due to the size of the resulting
trees. We create feature importance scores by calculating the
probability that each feature appeared on the path from the root
to the leaf node containing an item from the training set. This
ranking is weighted by the number of items at each leaf node.
Any feature appearing at the root node, for example, will have
a probability of 1 and come first in the derived ranking. This
gives us the direct influence audit results we will compare to.

Synthetic data. Beginning with the simple decision tree model
for the synthetic data, looking at the decision tree reveals that
only feature A is used explicitly - the decision tree has a
single split node. When we create a decision tree model of
this model, to confirm the model of a model technique, the
result is exactly the same decision tree. Creating a decision
tree model of the SVM model, we find again that there is a
single node splitting on feature A. Both models of models have
100% accuracy on the training set (that they were purposefully
over-fit to). The probability ranking of all of these models for
the synthetic data contains feature A first with a probability of
1 and all remaining features tied after it with a probability of
0 (since only feature A appears in the decision tree). Since the
probability ranking is a direct audit, it is not surprising that it
does not score proxy variables B and C highly.
Comparison to a direct influence audit. To evaluate the
model of a model probability ranking in comparison to the
GFA accuracy ranking, we compare the feature rankings on
three datasets (Adult, Recidivism and German). Specifically,
we collect the three generated rankings into one vector for
each of the feature ranking procedures and run a Spearman
rank-correlation statistical test. We find a combined sample
rank correlation of 0.413 (a 95% bootstrap confidence interval
of [0.115, 0.658]), and find also that we can reject the null
hypothesis (of no correlation), with p < 0.002. When we
compare the GFA ranking based on model consistency (cf.
Section V-B), the results are similar to the ones based on model
accuracy. This provides evidence that our feature auditing
procedure closely matches a direct influence audit overall.

Fig. 4. Model of a model decision tree probability rankings vs. GFA consistency
scores shown with a linear regression and 95% confidence interval. The outlying
features contain proxy information in the data set.

To consider the cases where these rankings don’t match,
we look at Adult Income under the C4.5 decision tree model.
As shown in Figure 4, linear regression confirms that most
features have similar scores, but there are a few important
outliers: marital-status, education, race, age, and
capital-gain. We hypothesize that the information in these
features can be reconstructed from the remaining attributes,
and so they are scored differently under an indirect influence
audit. We explore this hypothesis next.

D. Comparison to previous work

Henelius et al. [13] provide a different technique to solve
the Black-box Feature Auditing problem. They focus on
determining not only the influence scores associated with each

feature, but also groupings of features that are more influential
as a group than they are individually (i.e., have mutual influence
on a model’s outcomes) and use the consistency measure as the
score. The results of running their algorithm9 on the synthetic
data we considered here is shown in Table I.

C4.5 Decision Tree SVM
Feature Henelius et al. GFA Henelius et al. GFA
A 0.50 0.50 0.87 0.50
B 1.0 0.53 0.87 0.50
C 1.0 0.53 0.88 0.50
Random 1.0 0.96 0.99 0.97
Constant 1.0 1.0 1.0 1.0

TABLE I
Synthetic data comparison between Henelius et al. and GFA. All models
achieve 100% accuracy, so GFA consistency and accuracy are the same.

These scores on the synthetic data set illuminate the key
difference between the Henelius et al. work and GFA: while
Henelius et al. focus on auditing for direct influence on a
model, GFA includes both direct and indirect influence through
proxy variables. For example, the C4.5 decision tree created
on the synthetic data is a very simple tree containing one node
that splits on the value of feature A. Henelius et al. correctly
show that A is the only feature directly used by the model.
However, GFA additionally shows that features B and C are
proxies for A (recall that B is defined as two times feature A
and C is defined as negative one times feature A).

C4.5 Audit Scores Feature predictability
Feature Henelius GFA GFA REPTree C4.5 or

et al. cons. acc. M5
capital-gain 0.94 0.56 0.55 0.16 0.21
education 0.98 0.65 0.65 1.0 1.0
education-num 0.92 0.65 0.65 1.0 1.0
capital-loss 0.98 0.71 0.68 0.09 0.16
hrs-per-week 0.96 0.78 0.74 0.44 0.49
age 0.94 0.80 0.76 0.65 0.68
workclass 0.98 0.80 0.76 0.11 0.16
fnlwgt 0.99 0.83 0.77 0.15 0.22
marital-status 0.87 0.82 0.77 0.74 0.76
native-country 1.0 0.82 0.78 0.22 0.28
occupation 0.90 0.84 0.79 0.21 0.17
relationship 0.99 0.84 0.81 0.69 0.70
sex 1.0 0.87 0.82 0.62 0.62
race 1.0 0.92 0.83 0.25 0.23

TABLE II
Adult Income data comparison between Henelius et al and GFA consistency

and accuracy scores for a C4.5 decision tree model. Feature predictability
scores are correlation coefficient or Kappa statistic (for numerical or

categorical features, respectively) when predicting that feature from the
remaining features using two tree-based models.

For a real-world comparison to Henelius et al., we con-
sider the Adult data set under a C4.5 decision tree model.
The scores and rankings generated by Henelius et al. do
not match those generated by GFA. Figure 5 shows that
features marital-status, fnlwgt, sex, education,
education-num, and capital-gain are outliers. In
order to determine if this is due to the presence of proxy
variables, or variables that are more complexly encoded in the

9Available at: https://bitbucket.org/aheneliu/goldeneye/

Fig. 5. Henelius et al. influence scores vs. GFA consistency scores shown
with a linear regression and 95% confidence interval. The outlying features
contain proxy information in the data set.

remaining attributes by the decision tree, we then used two
tree-based models to predict each feature from the remaining
features (see Table II).10 Models were built on the test set
(using a 2

3 : 1
3 training-test split) in order to replicate the

data used for the audit. Reported predictability scores are the
correlation coefficient for numerical features and the Kappa
statistic for categorical features.

Looking at the resulting feature predictability scores, we see
that education and education-num are both perfectly
reconstructable from the remaining attributes. This is not
surprising since education-num is a numerical represen-
tation of education and thus, a perfect proxy. The GFA
consistency and accuracy measures both have education
and education-num as tied for an importance score of
0.65, thus confirming that GFA handles indirect influence,
while Henelius et al. has education with a score of 0.98
while education-num scores 0.92.

The features marital-status and relationship
are both highly, but not exactly, predictable from the re-
maining attributes. This is likely because these are close,
but not exact, proxies for each other. For example, the
relationship status “Unmarried” may mean a marital status of
“Divorced,” “Never-married,” or “Widowed.” The GFA scores
for marital-status and relationship show they are
of similar importance to the model, with consistency scores of
0.82 and 0.84 respectively (ranked 8.5 and 11.5 in importance),
and accuracy scores of 0.77 and 0.81 (ranked 8.5 and 12). The
Henelius et al. scores are less similar at 0.87 (ranked most
important) and 0.99 (ranked 10.5). The GFA closely matching
scores shows the procedure accounts for indirect influence of
a feature, while Henelius et al. does not.

Recent work by Datta et al. [8] (discussed in more depth
in Section II) present a similar approach, focusing on direct
influence, that can additionally identify proxy variables. Iden-
tifying the influence of proxy variables using this method
proceeds in two steps: first, the proxy variables are identified,
then their individual direct influence in the ranked list is found.
Considering the Adult data set, but under a different model, they
find that marital-status and relationship are both

10Weka’s REPTree, J48, and M5P models were used for this analysis with
the default model-building parameters. J48 was used to predict categorical
features and M5P was used for numerical features. REPTree can handle both
categorical and numerical features.

proxies for sex. Their ranking finds that marital-status
is ranked first for influence, relationship third, and sex
ninth. Additionally, their influence score for relationship
is under half of that for marital-status, and the influence
score for sex is under half of that for relationship.
Thus, similar to Henelius et al., the Datta et al. two step
procedure does not account for the shared indirect influence of
marital-status and relationship on the outcome.

E. Comparison to feature selection

Finally, we examine the relation between our auditing
procedure and feature selection methods. While GFA is
fundamentally different from feature selection since a) features
may not be removed from the model, and b) the model
may not be retrained, due to their similar ranked feature
results, we compare the resulting GFA ranking to a feature
selection generated ranking. Feature selection was applied to
the synthetic, Adult Income, and German Credit data sets. It
was performed using a wrapper method (around both C4.5
decision trees and SVMs) and a greedy forward search through
attribute subsets to generate a ranking.11 For both the Adult
Income and German Credit data sets feature selection created
identical rankings for both decision trees and SVMs.

Spearman’s rank correlation is a nonparametric test of
the relationship between two rankings, in this case the rank
orderings generated by feature selection and by GFA. The
synthetic data had a strong correlation between these rankings,
with feature A ranked first by all methods, though given
the small feature size this is not statistically significant. The
Adult Income and German Credit data set ranking comparison
correlations were both weak. This was not improved when
using the consistency feature ranking instead, and in the case
of the C4.5 decision tree was an order of magnitude weaker.

The weak correlation is not surprising since the two methods
ask philosophically different questions. We are interested in
the importance of a feature to a specific instance of a model,
while feature selection considers importance with respect to
an as-yet uninstantiated model. In addition, feature selection
gives an indication of the direct influence of a feature, while
GFA is focused on indirect influence.

VI. DISCUSSION

Feature influence is a function of the interaction between
model and data. A feature may be informative but not used
by the classifier, or conversely might be a proxy and still
useful. Thus, influence computation must exploit the interac-
tion between model and data carefully. If the obscured and
unobscured datasets are similar, then the classifier can’t have
found useful signal and the classifier’s outputs won’t change
much under our audit. If there were significant differences and
the classifier used these differences in its model, then gradient
feature auditing will show a change in the classifier behavior,
as desired. Finally, if there were differences between attribute

11Feature selection was implemented in Weka version 3.6.13 using Wrap-
perSubsetEval and Greedy StepWise on J48 and SMO models. Default options
were used, save for the generation of a complete ranking for all features.

subgroups but those differences are irrelevant for the classifier,
then gradient feature auditing will not show a large change
in classifier behavior. This “sensitivity to irrelevance” is an
important feature of a good auditing procedure.

It remains a challenge to effectively compare different
approaches for auditing models since, as we have seen, different
approaches can have points of agreement and disagreement. Our
obscuring procedure prefers to use a computational metaphor
– predictive power – rather than a statistical metaphor such
as hypothesis testing, but it seems likely that there are ways
to relate these notions. Doing so would provide a combined
mathematical and computational framework for evaluating
black-box models and might help unify the different existing
approaches to performing audits.

VII. RELATED WORK

In addition to early work by Breiman [4] and the recent works
by Henelius et al. [13] and Datta et al. [8], a number of other
works have looked at black-box auditing, primarily for direct
influence [9], [27], [25], [24]. There are potential connections to
privacy-preserving data mining [1]: however, the trust model is
different: in privacy-preserving data mining, we do not trust the
user of the results of classification with sensitive information
from the input. In our setting, the “sensitive” information must
be hidden from the classifier itself. Another related framework
is that of leakage in data mining [15], which investigates
whether the methodology of the mining process is allowing
information to leak from test data into the model. One might
imagine our obscuring process as a way to prevent this: however,
it might impair the efficacy of the classifier.

Another related topic is feature selection, as we discussed in
Section V-E. From a technical standpoint (see [7]), the wrapper
approach to feature selection (in which features are evaluated
based on the quality of the resulting prediction) is most related
to our work. One such method is stepwise linear regression, in
which features are removed from input for a generalized linear
model based on their degree of influence on the model to make
accurate predictions, measured using a correlation coefficient.

Model interpretability focuses on creating models that
are sparse, meaningful, and intuitive and thus human-
understandable by experts in the field the data is derived from
[26]. The classic example of such models are decision trees
[19], while recently supersparse linear integer models (SLIMs)
have been developed as an alternative interpretable model for
classification [26]. New work by Ribeiro et al. [21] trains a
shadow interpretable model to match the results of a given
classifier. For neural networks, various approaches based on
visualizing the behavior of neurons and inputs have also been
studied [28], [14], [16].

Finally, we note that a compelling application for black-
box audits of indirect influence includes considerations of
algorithmic fairness [22]. Understanding the influence of
variables can help with such a determination.

REFERENCES

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. In ACM
Sigmod Record, volume 29, pages 439–450. ACM, 2000.

[2] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias.
ProPublica, May 23, 2016.

[3] N. Barakat and J. Diederich. Learning-based rule-extraction from
support vector machines. In Proc. of the 14th International Conference
on Computer Theory and Applications, 2004.

[4] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[5] C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model compression.

In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 535–541. ACM, 2006.

[6] G. Casella and R. L. Berger. Statistical Inference. Cengage Learning,
2nd edition, 2001.

[7] G. Chandrashekar and F. Sahin. A survey on feature selection methods.
Computers and Electrical Engineering, 40:16–28, 2014.

[8] A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative
input influence: Theory and experiments with learning systems. In
Proceedings of 37th IEEE Symposium on Security and Privacy, 2016.

[9] W. Duivesteijn and J. Thaele. Understanding where your classifier does
(not) work - the SCaPE model class for EMM. In International
Conference on Data Mining (ICDM), pages 809–814, 2014.

[10] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and
S. Venkatasubramanian. Certifying and removing disparate impact.
Proc. 21st ACM KDD, pages 259–268, 2015.

[11] D. Freedman and P. Diaconis. On the histogram as a density estimator:
L 2 theory. Probability theory and related fields, 57(4):453–476, 1981.

[12] T. Hastie and R. Tibshirani. Classification by pairwise coupling. In
M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural
Information Processing Systems, volume 10. MIT Press, 1998.

[13] A. Henelius, K. Puolamäki, H. Boström, L. Asker, and P. Papapetrou. A
peek into the black box: exploring classifiers by randomization. Data
Min Knowl Disc, 28:1503–1529, 2014.

[14] M. Kabra, A. Robie, and K. Branson. Understanding classifier errors by
examining influential neighbors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3917–3925, 2015.

[15] S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman. Leakage in data
mining: Formulation, detection, and avoidance. ACM Transactions on
Knowledge Discovery from Data (TKDD), 6(4):15, 2012.

[16] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado,
J. Dean, and A. Y. Ng. Building high-level features using large scale
unsupervised learning. In Proc. ICML, 2011.

[17] D. S. Massey and N. Denton. American Apartheid: Segregation and the
making of the underclass. Harvard University Press, 1993.

[18] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[19] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

[20] P. Raccuglia, K. C. Elbert, P. D. F. Adler, C. Falk, M. B. Wenny,
A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist.
Machine-learning-assisted materials discovery using failed experiments.
Nature, 533:73–76, May 5, 2016.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin. ”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier. In Proc. ACM KDD, 2016.

[22] A. Romei and S. Ruggieri. A multidisciplinary survey on discrimination
analysis. The Knowledge Engineering Review, pages 1–57, April 2013.

[23] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with
applications to image databases. In Computer Vision, 1998. Sixth
International Conference on, pages 59–66. IEEE, 1998.

[24] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis.
Conditional variable importance for random forests. BMC
bioinformatics, 9(1):1, 2008.

[25] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random
forest variable importance measures: Illustrations, sources and a
solution. BMC bioinformatics, 8(1):1, 2007.

[26] B. Ustun, S. Traca, and C. Rudin. Supersparse linear integer models for
interpretable classification. Technical Report 1306.6677, arXiv, 2014.

[27] O. P. Zacarias and H. Bostrom. Comparing support vector regression
and random forests for predicting malaria incidence in Mozambique. In
Advances in ICT for Emerging Regions (ICTer), 2013 International
Conference on, pages 217–221. IEEE, 2013.

[28] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In Computer Vision — ECCV 2014, pages
818–833. Springer, 2014.

[29] J. Zeng, B. Ustun, and C. Rudin. Interpretable classification models for
recidivism prediction. Technical Report 1503.07810, arXiv, 2015.

