
Automated Congressional Redistricting

HARRY A. LEVIN and SORELLE A. FRIEDLER, Haverford College

Every ten years, when states are forced to redraw their congressional districts, the process is intensely partisan,

and the outcome is rarely fair and democratic. In the last few decades, the growing capabilities of computers

have offered the promise of objective, computerized redistricting. Unfortunately, the redistricting problem can

be shown to be NP-Complete, but there are a number of heuristics that are effective. We specifically define the

redistricting problem and analyze several variations of a new divide and conquer algorithm, comparing the

compactness and population deviation of our new algorithm to existing algorithms and the actual districts.

We offer a comparative component-based analysis that demonstrates the strengths and weaknesses of each

algorithm component and the type of input. The comparative analysis shows that there are several ways to

produce valid redistricting plans, but each approach has benefits and consequences.

Our new algorithm produces valid results to the redistricting problem in almost every state that undergoes

congressional redistricting, offering a new solution to this challenging real world problem. In one version, the

algorithm produces plans with the optimal population deviation in 42 out of 43 multi-district states, which

is better than most algorithms in the literature. While compactness scores vary, this approach offers new

opportunities to improve population deviation. Our output files comply with the accepted format at most

government hearings and redistricting competitions, so the results would be compatible with most public

participation efforts in 2020.

CCS Concepts: • Applied computing→ Voting / election technologies; E-government.

Additional KeyWords and Phrases: computational geometry, clustering, experimental algorithms, redistricting,

gerrymandering

ACM Reference Format:
Harry A. Levin and Sorelle A. Friedler. 2019. Automated Congressional Redistricting. ACM J. Exp. Algor. 1, 1
(March 2019), 24 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Every ten years, state legislatures across the United States redraw the districts for state and federal

representatives. The process of redistricting is notoriously partisan and prone to political mischief.

Politically motivated redistricting designed to favor a certain group, known as gerrymandering

[28], is a persistent problem, and many reformers have sought alternatives to the politicized process

[25]. Recently, these have included developing algorithms as a method of reducing the political bias.

However, there is considerable debate over what attributes a good district needs to have because

there are competing theories on how to define good representation [23]. This has led to a variety

of redistricting algorithms with varying results.

Broadly stated, the goal of a redistricting algorithm is to partition a state’s population units into

a given number of compact, contiguous, and equally sized districts. While redistricting laws differ

from state to state, population equality, contiguity, compactness, and communities of interest are

Authors’ address: Harry A. Levin, halevin13@gmail.com; Sorelle A. Friedler, sorelle@cs.haverford.edu, Haverford College,

370 Lancaster Avenue, Haverford, PA, 19041.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1084-6654/2019/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Levin and Friedler

almost universal criteria [40]. The version of the redistricting problem that we consider emphasizes

population equality, requiring a deviation between districts of at most 0.5% of the average population,

which complies with the most recent Supreme Court precedent [49, 52, 53]. Districts must also be

contiguous, such that for any two points inside the district there exists a path between the two

points that does not cross the district boundary [40]. Contiguity also implicitly requires that a

single building, such as houses and apartment buildings, must be in a single district, assuming that

an algorithm relies on census blocks for its underlying data.
1
This is consistent with the definition

of contiguity in most states [40].

Following H.P. Young’s skepticism of compactness measures [68], we exclude compactness from

the problem definition, and use it instead to evaluate the quality of redistricting plans. Young

demonstrates that each compactness measure fails to capture at least one type of non-compact

district, suggesting that all examined compactness measures are flawed [68].

We exclude communities of interest from this analysis because this concept is notoriously vague.

A community of interest is a group of people who have similar qualities, such as religion, race, or

culture, and live in close proximity [40]. Some reformers suggest that districts should include entire

communities of interests to offer like minded voters the same representative [40]. Yet, there is no

consensus on which qualities qualify a group as a community of interest because there are flaws

with quantitative assessments of communities of interests [43]. State laws suggest that criteria such

as socioeconomic status, race, geography, historical interests, culture, traditional neighborhoods,

occupations, and lifestyles should factor into the calculation of a community of interest [39], but

there is no clear formula for combining the criteria. As a result, the definition of a community of

interest and its geographic boundary are subjective [43]. Lacking a precise definition, communities

of interest are difficult to incorporate into an algorithm without additional human input, so we do

not implement this criterion. The results could be modified to include communities of interest by

merging the given population units to reflect a specific community. Even though communities of

interest are not explicit features of the algorithms in this analysis, this merge trick works on any

algorithm that builds districts from small population units.

Competitiveness and proportionality are other criteria that are scrutinized [40]. Many studies

have analyzed the impact of gerrymandering on election competitiveness [2, 14, 27, 29, 33, 42, 62, 67],

and recent work has highlighted the preference for proportionality, when the aggregate number of

votes for a particular party in a state is proportional to the number of seats that the party wins

[5, 60, 65]. Both measures involve predicting the outcome of the next election in the proposed

districts based on historical data. The efficiency gap, which measures the number of “wasted votes”,

has received the most attention, and it has been positioned as a way to measure gerrymandering

[13, 60]. However, competitive elections and proportional results are not universally accepted.

Election results can be skewed by a number of factors unrelated to the district shape, such as the

concentration of Democrats in cities and Republicans in rural ares [20, 21]. Additionally, uncompeti-

tive elections are considered favorable when the legislature tries to increase minority representation

through the creation of minority districts [21]. Since competitiveness and proportionality are not

yet settled legal requirements, and the interpretation of a good outcome is ambiguous, we exclude

election data from our analysis.

1.1 Redistricting Problem Definition
We precisely define the redistricting problem and describe the measures that will be used to evaluate

it. Redistricting is essentially a set partition problem with additional restrictions. Let the state

1
Since the census block is the smallest available U.S. Census population unit, we cannot subdivide census blocks, which

ensures that any building is in a single district.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 3

graph, G = (V ,E), be a connected graph that represents the geography of a given state. For all

vertices v ∈ V , v represents a population unit (such as a census block) that has weightw(v) equal
to the unit population. There is an edge between vertices v,w ∈ V if the associated population

units’ polygonal boundaries are adjacent, sharing at least a vertex. The goal is to partition G into k
connected subgraphs each representing a district. These districts, denoted Gi where Gi = (Vi ,Ei)
andVi ⊂ V ,Ei ⊂ E, should be created such that the total population of any district population(Gi) =∑
v ∈Vi w(v) is equal to the desired population L. The load capacity L is the desired number of people

per district under perfectly even representation, i.e., for a state with population n =
∑
v ∈V w(v),

L = n/k . The population deviation from L is defined as ε = (maxi {|population(Gi) − L|}) /L.

Definition 1.1. Congressional Redistricting Problem: PartitionG into k connected subgraphs

so as to minimize ε .

We evaluate the effectiveness of an algorithm by the consistency with which it produces plans

with low population deviations and high compactness measures. A solution will be considered valid

where ε ≤ τ for τ = 0.005. While population deviation is determined by calculating ε , we evaluate
redistricting plan compactness with three standard compactness measures: Convex Hull, Polsby-

Popper, and Modified Schwartzberg. Convex Hull compactness measures the ratio of the area of the

computed district D to the area of the convex hull of the computed district, area(D)/convexHull(D)
[47]. Polsby-Popper is the ratio of the area of the computed district to the area of a circle which

has the same perimeter of the computed district,

(
4π · (area(D)/perimeter (D)2

)
[47]. Modified

Schwartzberg is the ratio of the circumference of a circle that has the same area as the computed

district to the perimeter of this computed district,

(
2π

√
area(D)/π

)
/perimeter (D) [47]. Note, there

are variations of the Schwartzberg measure, but we choose this one to keep the range between

zero and one, which is consistent with our other measures. For all three measures, scores that are

closer to zero are considered less compact.

1.2 Results
We introduce a Divide and Conquer Redistricting Algorithm. It uses fixed centers at the corners of

the state and recursive substates to determine two districts at a time. These districts are determined

using a Voronoi approach followed by swapping to ensure contiguity and a small population

deviation. Multiple variations of the algorithm are considered, focusing on minimizing population

deviation, maximizing compactness, and maximizing compactness subject to a constraint ensuring

a valid population deviation. These variations are analyzed experimentally on all 43 multi-district

states and the variation maximizing compactness subject to a valid population deviation is the

resulting recommended algorithm.

Our new algorithmic results are compared to the existing districts and a simulated annealing

approach [55]. In one variation, our algorithm produces redistricting plans with the optimal

population deviation of one person in every state except New York. This population deviation

is better than the simulated annealing approach although the compactness scores are worse on

average [55]. Our new algorithm produces valid results to the redistricting problem in almost every

state that undergoes congressional redistricting, offering a new solution to this challenging real

world problem.

2 BACKGROUND LITERATURE
There are a large number of possible ways to draw congressional districts. Altman has shown that

the redistricting problem is NP-Complete [4]. There are approximation algorithms that are related

to redistricting, but they do not satisfy all of the redistricting problem constraints as stated. The

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

4 Levin and Friedler

load balancing problem has a known 4/3 approximation, which is too large to guarantee the 0.5%
population deviation in our problem definition [30]. The set partitioning problem can be solved

with the Karmarkar Karp (KK) algorithm, which has a O(1n) approximation bound [38]. Given a

large enough value of n, the population bound of KK would satisfy the 0.5% population deviation

in our problem definition. However, the algorithm only meets the population deviation constraint

and cannot obviously be converted into a version of the redistricting problem when contiguity is

required.

There are many existing heuristic redistricting algorithms, which fall into two categories: par-

titioning algorithms and swapping algorithms. In the following sections, we define the types of

algorithms and offer examples from the redistricting literature. There are a number of evaluation

methods covering many compactness and competitiveness scores set to different scales. We focus

the review on the consistency to which an algorithm produces valid plans, which is more easily

comparable between papers. For more detailed information about further redistricting algorithms,

see this comprehensive survey [57].

2.1 Partitioning Algorithms
Partitioning algorithms take a geographic region of population units and separate them into

k contiguous sets. Partitioning algorithms fall into greedy and recursive approaches each with

different variations.

Most of the greedy redistricting algorithms are based on Voronoi approaches [15, 22, 31, 34, 56,

59, 61]. Voronoi algorithms are effective because Voronoi diagrams produce a fixed number of

contiguous, compact partitions. Given a set of centers, the Voronoi-based redistricting algorithms

assign population units to the closest open center in the set that has not reached a population

threshold. The selection of centers has a significant impact on the outcome. Svec et al. choose
sites based on the k largest population units that are geographically distributed throughout the

state and produce a population deviations of 0.74% [61].
2
Ricca et al. chooses centers based on

minimizing the longest path from a center to the furthest assigned population unit and gets a much

worse deviation [56]. While the Svec et al. algorithm is one of the more effective algorithms in the

literature, it runs the risk of subdividing a single house into separate districts.

A k-means based redistricting algorithm is a variation of a Voronoi approach, in which centers can

move after each iteration. Like the Voronoi approach, the initial selection of centers has significant

impact on the k-means output. Sparks chooses centers in North Carolina randomly and produces a

population deviation greater than 150% [59]. Bottman et al. selected centers based on the placement

of the actual districts and produced better output with population deviations around 2.5% [15]. The

drastic differences in population deviation demonstrate the importance of the initial selection of

centers. In addition, the size of the population units may also impact the output. Cohen-Addad et
al. select centers randomly, similar to Sparks, but districts are produced from census blocks instead

of census tracts, producing an optimal deviation of 1 person or less in 6 out of 6 states [22]. While

the Cohen-Addad algorithm demonstrates effective results, the districts are not as compact as they

appear since the census block geometry is represented by a single point [22].

Moment of inertia algorithms offer another variation of Voronoi techniques [31]. These algorithms

alternate between generating a set of districts from fixed centers and generating new centers from

a set of districts. Spann et al. [31] builds on an approach from Hess et al. [34] and implements a

moment of inertia algorithm that produces a deviation within 2%. The results from Hess et al. are
not comparable to modern algorithms because technology limitations restricted their sample size

2
While this deviation is not valid under our definition of the problem, it is within the acceptable range, according to some

court precedent [49, 52, 53].

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 5

to less than 300 population units [34]. Spann et al. show results improve with more population

units and faster technology that can iterate through more plans [31]

While Voronoi algorithms assign units to districts based on the distance to the closest seed,

Constrained Polygonal Spatial Clustering (CPSC) uses an objective function to weigh a set of

criteria. Joshi et al. implement a CPSC algorithm with an objective function, requiring population

equality within 1%, contiguity, and maximization of Schwartzberg compactness [35]. They produce

multiple redistricting plans with census tracts in Nebraska and Indiana, showing that multiple seed

selection approaches result in population deviations within 1% [35].

Recursive algorithms are also effective because they break the redistricting problem into smaller

subproblems, which are easier to solve. The shortest split-line algorithm is the most common

[12, 37, 64]. Using a divide and conquer method, the goal at every step is to find the shortest line

that cuts the state into two pieces such that these pieces contain equal portions of the population.

Benn and German show experimentally that a 3% population deviation is achievable [12]. Kalcsics

et al. use a similar approach on a small sample of German zip codes and produce a population

deviation around 15 people [37]. Both algorithms are computationally taxing: Benn and German

provide a O(N 3) complexity [12] while Kalcsics et al. provide large runtimes [37]. These results

suggest that the shortest split-line algorithm may only be feasible in small states. Although the

algorithm has the advantage of being simple, it may not produce legal plans since it could subdivide

a single house into separate districts.

The Diminishing Halves Algorithm is another divide and conquer approach that uses least

squares regression analysis to recursively subdivide districts [31]. Spann et al. choose the line

perpendicular to this best-fit line to avoid dividing major cities and produces plans with population

deviations around 2% [31].

Linear programming and Monte Carlo algorithms are worth mentioning for completeness. Caro

et al. show that linear programming can effectively limit overcrowding in school redistricting, yet

the results were performed on small samples [18]. Linear programming approaches to redistricting

do not tend to scale for large problem sizes [3, 18]. Assis et al. redistrict at a city, but they solve a

different flavor of the redistricting problem with weaker bounds on population deviation that rely

on an existing assignment of people to utility districts [7]. Magleby et al. implement a redistricting

algorithm based on a Monte Carlo simulation but define a large population deviation bound at 1.5%
and only show results for 3 states [46].

2.2 Swapping Algorithms
Swapping algorithms improve an existing redistricting plan based on given criteria. The algorithms

evaluate population units on the boundary of two districts and swap these boundary units from one

district to the other. Swapping algorithms can be categorized as local search swapping, which only

allow beneficial swaps [32] and metaheuristic swapping, which allows some detrimental swaps

[55]. Both techniques require a complete redistricting plan as an input, and the method attempts to

improve the result by reassigning population units to different districts.

A local search swapping algorithm reassigns population units between districts only if the

swap improves the plan until there are no more swaps that can improve the output [32]. Kaiser,

Nagle, and Hayes implement local search swapping algorithms for counties in various states with

varying results [32, 36, 48]. Kaiser produces congressional districts in Illinois with 26.4% population

deviation [36] while Nagel produces fewer districts on a smaller subset of Illinois with 4% population

deviation [36]. Hayes produces congressional districts in North Carolina with 4.4% population

deviation [32]. Local search swapping is limited by the initial districts and a suboptimal initial set

can exhaust beneficial swaps before producing a valid plan [32].

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

6 Levin and Friedler

Other work has focused on making detrimental swaps to avoid getting stuck in a local optimum

plan [32, 44, 45, 55]. Several metaheuristics allow more of the sample space to be explored by

allowing these swaps that make the output worse. Simulated annealing introduces non-deterministic

random swaps, which can increase population deviation to improve other objective criteria [32].

Hayes compares a simulated annealing approach to a local search swapping approach and improves

the output from 4.4% to under 1% [32]. Macmillan and Pierce implement a simulated annealing

approach that produces results with good population deviation, but does not scale [45]. While,

Macmillan demonstrates a method for speeding up this algorithm, it is not clear whether the

population deviation is maintained in larger cases [44] Brian Olson offers another simulated

annealing approach and produces population deviations under 1% in all U.S. states. In many cases,

the Olson algorithm produces deviations several orders of magnitude lower, such as the 0.02%
population deviation in his Pennsylvania plan. We believe this algorithm to be the best in the

literature because it is scalable, produces population deviations within or near the legal range in all

states, and consistently produces plans with the highest compactness scores compared to other

algorithms. (We will compare our algorithm to Olson’s in Section 4)

Tabu search is another metaheuristic swapping algorithm that has been applied to redistricting.

This approach limits similar outputs by preventing the number of times a search path is taken. The

algorithm introduces “tabu" paths that make the result worse initially to explore different areas

of the solution set. Bozkaya et al. implement a tabu search redistricting algorithm for the city of

Edmonton and produces a population deviation around 1% [16]. While this deviation is low, there

is no evidence that tabu search algorithms scale to the average U.S. state.

Genetic algorithms, another metaheuristic swapping algorithm, combine features of high scoring

plans from an objective function, mimicking the evolutionary process of natural selection. Bacao

et al. describes a genetic algorithm that is initialized randomly and mutated based on population

equality, compactness, and contiguity with 5,000 generations [11]. While Bacao et al. do not apply

the algorithm to the congressional redistricting problem, Joshi et al. implement it for Nebraska

and Indiana‘s congressional districts, showing population deviations well over the legal threshold

in both states [35]. While Joshi et al. use a weighted function to combine criteria in the objective

function, Vanneschi et al. use a NSGA-II technique to optimize both compactness and population

deviation simultaneously, yielding population deviations well under the legal threshold in Nebraska,

Indiana, Georgia, and Pennsylvania [63]. Baas implements a similar genetic algorithm with more

components in the objective function [10]. While previous algorithms initialize the first generation

randomly, Baas initializes both randomly and based on the actual districts [10]. In addition to the

standard objective function criteria, population equality, compactness, and contiguity, Baas also

includes historical election data, incorporating competitiveness and proportionality [10]. Baas

provides a sample result for each state, producing many congressional districts with a population

deviation under 1% [10]. However, it is unclear what weights are used in the objective function and

how many generations were run.

2.3 Limitations of Existing Approaches
There are a few fundamental gaps in the literature on redistricting algorithm effectiveness. Most

of the algorithms in the literature do not show evidence that they can produce valid population

deviations for the congressional redistricting problem in all states, but instead only demonstrate a

handful [12, 15, 31, 32, 35, 36, 48, 56, 59, 63]. The Olson and Baas algorithms stand out by producing

contiguous redistricting plans with population deviations under 0.5% in most of the 43 states that

do congressional redistricting [10, 55].

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 7

Reproducibility and a full comparative analysis with existing algorithms is another concern in the

literature. We suggest that the results in each state should include a block-equivalency file
3
for each

redistricting plan that is presented and the code used to generate the results. The block-equivalency

file provides enough information to calculate any population or geographic measure, and it is the

standard format for government hearings [6, 26, 50, 51] and the redistricting software used in a

number of redistricting competitions [9]. By providing source code, the experimental results can

be verified and manipulated for further study.

While Olson does not provide the detailed weights and number of executions, he provides the

original source code, which is more transparent than most sources [55]. Since this approach shows

the best results of any redistricting algorithm, we use it as the main point of comparison for our

new algorithm.

3 DIVIDE AND CONQUER REDISTRICTING ALGORITHM
We introduce a new recursive Divide and Conquer Redistricting Algorithm, which combines

partitioning and swapping components. The divide and conquer portion of the algorithm allows us

to separate the overall district into pieces so that each redistricting step only needs to focus on

creating two districts of a given population size. The redistricting step has two components at each

recursive iteration: Voronoi and swapping components. To calculate the Voronoi seeds, the algorithm

draws the axis-aligned bounding rectangle, called the district envelope,
4
and creates versions of a

two district partition from each of the corners of this rectangle. The Voronoi component divides the

state in half assigning the next closest population unit to one district until the population is greater

than the ideal threshold, L. The remaining units are assigned to another district. The swapping

component adjusts for breaks in contiguity and performs local search swapping to improve the

population deviation between the two districts. The version of the two district partition with the

best population deviation (or, in a variation, the best compactness) is selected and recursively

subdivided into more districts.

More specifically, the divide and conquer component (shown in Figure 1) is given the number of

remaining partitions to create, k , and the remaining portion of the state that should be divided into

these k partitions, subgraphGs . If the number of remaining partitions is odd, the desired population

to achieve in one congressional district in the redistricting step is set to L = n
k . The two-district

redistricting step will then create one district close to this desired population and another with the

remaining population fromGs . If, instead, the number of remaining districts is even, the population

threshold will be set to the ideal population of an equally weighted partition, population(Gs)/2.

The redistricting step will be run recursively until the number of remaining partitions is 1.

The two-district redistricting step (see Figure 2) that we will describe in detail for the remainder

of this section has the following components: a Voronoi step where multiple possible source sites

are chosen and Voronoi partitions are created, a Contiguity Swapping step where population

units are swapped between the two districts in order to create contiguous districts, a Population

Swapping step where population units are swapped in order to create a low population deviation

while maintaining contiguity, and a Maximization step where the resulting redistricting options,

based on different Voronoi site choices, are compared and the best is chosen.

3
A block-equivalency file is a csv file with two columns: the population unit identifier and the district to which it is assigned.

4
The envelope of a polygon is defined as the smallest possible, axis-aligned rectangle with a equirectangular projection of

the Earth that covers all of the coordinates in the polygon [24].

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

8 Levin and Friedler

function DivideAndConqer(remainingDistricts, districtToDivide, maxFunction)

if remainingDistricts is 1 then
return districtToDivide

end if
if remainingDistricts is odd then

L← n/k
remainingDistrictsCall1← 1

remainingDistrictsCall2← remainingDistricts −1

else
L← population(districtToDivide) / 2

remainingDistrictsCall1← remainingDistricts / 2

remainingDistrictsCall2← remainingDistricts / 2

end if
leftDistrict, rightDistrict← RedistrictTwoDistricts(districtToDivide, L,
maxFunction, f alse)

leftDistrictsList← DivideAndConqer(remainingDistrictsCall1, leftDistrict,

maxFunction)

rightDistrictsList← DivideAndConqer(remainingDistrictsCall2, rightDistrict,

maxFunction)

return concatenateLists(leftDistrictsList, rightDistrictsList)

end function

Fig. 1. Divide and Conquer Redistricting Algorithm: This is the main function for the redistricting
algorithm. The work of dividing the given district in two is done by the redistrictTwoDistricts algorithm that
attempts to achieve a district with population close to the given value L. A list of created districts is returned.

3.1 Voronoi Component
The Voronoi component we use modifies the standard Voronoi partitioning to operate with a single

site a and a given capacity threshold L, with the goal of partitioning the given region to be districted,

Gs = (Vs ,Es), into two regions. (See Figure 3 for pseudocode.) In order of distance from the site’s

region, we add population units until the site is at capacity. Specifically, letting A be the partition

we are creating from a, start by assigning the closest v ∈ Vs based on the population unit centroid

to A. Continue assigning v ∈ Vs to A in order of proximity until

∑
v ∈A

w(v) > L where L is the

given population capacity for the district region. The remaining vertices V \A are assigned to the

other partition B. Note that while the method assigns population units that are nearby, it does not

guarantee contiguity of A or B since distance is determined geographically and not based on the

underlying state graph. Guaranteeing contiguity for A and B will be handled in the next section.

The choice of site to consider is clearly critical to the quality of the resulting districting. Since

the algorithm only selects one site for a two district partition, a poor site selection could result in

districts that resemble the unusual shapes that we aim to reduce. We select one of the four corners

of the envelope of the polygonal boundary of the district region because it limits the amount that

one district can surround the other in the two district partition. Since the closest population unit is

iteratively added to a district in the Voronoi component, the district has a radius, represented by

the grey circle in Figure 4. If we select a site inside the bounding box or on a non-corner edge of

the bounding box, the radius may only reach one edge of the bounding box, or none at all. In these

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 9

function RedistrictTwoDistricts(districtToDivide, L, maxFunction, tryingAgain)

smallestEnclosingRectangle← envelope of polygonal boundary of districtToDivide

districtPossibilities← ∅

for each corner of the smallestEnclosingRectangle do
district1, district2←ModifiedVoronoi(corner, L, districtToDivide)
district1, district2← ContiguitySwapping(district1, district2)

district1, district2← PopulationSwapping(district1, district2, L,
tryingAgain)

districtPossibilities ∪ { (district1, district2) }

end for
if populationDeviation(ChooseBest(districtPossibilities, MinPop)) > 1 person

and not tryingAgain and maxFunction is MinPop then
RedistrictTwoDistricts(districtToDivide, L, maxFunction, true)

end if
return ChooseBest(districtPossibilities, maxFunction)

end function

Fig. 2. Two-district Redistricting: This method divides a region into two districts, where one has the given
population size L and the other has the remaining population. Each corner of the bounding rectangle is tried
as a possible site for the modified Voronoi component, and the best resulting districting is returned.

functionModifiedVoronoi(site, L, districtToDivide)
district1← site

district2← ∅

while population(district1) ≤ L do
u ← arg minu ∈ districtToDivide \ district1 distance(u, site)

district1← district1 ∪ u
end while
district2← districtToDivide \ district1

return district1, district2

end function

Fig. 3. Modified Voronoi: The modified Voronoi component of the redistricting algorithm creates two
partitions based on a single given site and a population capacity for that site, L. Population units geographically
close to the site are added to its partition until the site is at capacity; the remaining population units are
added to the other partition.

scenarios, the second district, represented by the white space inside the bounding box, has a larger

perimeter and is unlikely to produce high scores for the Polsby-Popper and Modified Schwartzberg

measures. However, the sites at the corners of the bounding box touch two sides of the bounding

box, reducing the perimeter of the second district, which will likely improve the compactness

scores.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

10 Levin and Friedler

Fig. 4. The selection of sites impacts the amount that one district can surround the other district in the two
district partition. The site at the corner of the bounding rectangle limits this, so we only select sites at the
corner of the bounding rectangle.

function ContiguitySwapping(district1, district2)

if district1 contains non-contiguous components then
large← contiguous component of district1 with most polygonal bounding vertices

district2← district2 ∪ district1 \ large

district1← large

end if
if district2 contains non-contiguous components then

large← contiguous component of district2 with most polygonal bounding vertices

district1← district1 ∪ district2 \ large

district2← large

end if
return district1, district2

end function

Fig. 5. Contiguity Swapping: The contiguity swapping component fixes breaks in contiguity by reassigning
non-contiguous population units to the other district in the two-district partition. Once the non-contiguous
units in both districts are reassigned, the two-district partition will have two contiguous districts.

3.2 Contiguity Swapping
The two district partitioning created by the Modified Voronoi component may not create districts

that are contiguous; here, we introduce a Contiguity Swapping component to resolve this issue (see

Figure 5). The intuition behind this component is that if each district contains a large contiguous

component andmany smaller disconnected components, each smaller component can be swapped to

the other district; since there are only two districts and the state graph is connected, any component

not contiguous with one district is contiguous with the other.

Specifically, each district’s contiguous components are first identified. The largest contiguous

component remains in the district, where size is determined based on the number of vertices on

the polygonal boundary of the district. (The number of vertices is used as a proxy for the total

population of the component since it is faster to calculate with the data structures used in our

implementation and in practice most population units on the district boundary contribute to this

vertex count.
5
) The remaining non-contiguous components are swapped to the other district. This

set of steps is performed once for each district. Since there are only two districts, the swapped

5
Future work could consider using the actual total population.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 11

components will be contiguous with the other district. Next we show that the resulting two districts

are indeed contiguous.

Lemma 3.1. The Contiguity Swapping component returns two contiguous districts.

Proof. The Contiguity Swapping component is given a two district partitioning made up of

a set of disjoint contiguous subgraphs. Let district1 = {A1 ∪ A2... ∪ Ax } and district2 =
{B1 ∪ B2... ∪ By }.
If x = 1, district1 is already contiguous and so the first part of the algorithm is skipped.

Otherwise (when x > 1), let Ax be the component selected as largest (based on the number of

vertices bounding the region) from district1. The remaining elements, {A1∪A2...∪Ax−1}, will be

reassigned to district2 leaving district1 = Ax . SinceAx is contiguous by definition, district1
is contiguous.

Now district2 = {A1 ∪A2...∪Ax−1 ∪B1 ∪B2...∪By }. SinceA1,A2, ...Ax are mutually disjoint,

the state graph is connected, and there are only two districts, each component A1,A2, ...,Ax−1
must be contiguous with at least one component in B1, B2, ... By . Let the new disjoint contiguous

components of district2, now containing some population units that were originally part of

district1, be B′
1
,B′

2
, ...,B′y .

If y = 1 after these population units are added to district2, then district2 is contiguous

and the algorithm finishes. Otherwise (when y > 1), let B′y be the component selected as largest

(based on the number of vertices bounding the region) from district2. The remaining elements,

{B′
1
∪B′

2
...∪B′y−1}, will be reassigned to district1. Since B

′
y is contiguous by definition, district2

is contiguous.

But what about district1 - is it still contiguous? Now district1 = {Ax ∪ B
′
1
∪ B′

2
... ∪ B′y−1}.

Recall that B′y is not contiguous with B′i for any i by definition and that B′i is also not contiguous

with any B′j for any j. Since the state graph is connected, this means that each B′i is a neighbor of

Ax . Therefore, district1 = A′x = {Ax ∪ B
′
1
∪ B′

2
... ∪ B′y−1} is contiguous. □

3.3 Population Swapping Component
To improve the population deviation, we introduce another swapping component. This local search

component swaps vertices between the two sets that improve the difference in population until

there are no more beneficial swaps. The pseudocode for this component is shown in Figure 6.

The set of population units in the larger district that neighbor at least one population unit in the

other district are called swappable population units. The swappable population unit that minimizes

the population deviation between the two districts and does not break contiguity is swapped and

removed from the swappable set. We continue swapping population units from this set until there

are no more swappable population units.

Since the full swapping algorithm takes significant time for a large set of population units, we

initially run one level of swaps to determine if the optimal population deviation is achieved with

this partial component. We will refer to this as the partial population swapping component, in which

the swappable population units are only calculated once. This component starts in Figure 2, when

RedistrictTwoDistricts is recursively called where the flag tryingAgain is set to false. In most

states, this approach is sufficient for reaching the optimal population deviation. However, in some

states we need the full component that recalculates a new set of swappable population units after

previous sets are exhausted. This full component is turned on if a perfect deviation cannot be found

with the partial component. The full component starts in Figure 2 when RedistrictTwoDistricts is
recursively called where the flag tryingAgain is set to true.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

12 Levin and Friedler

function PopulationSwapping(district1, district2, L, tryingAgain)
lastDeviation =∞

while |population(district1)−L| > 1

and |population(district1)−L| < lastDeviation do
lastDeviation← |population(district1)−L|
moreDevDistrict← arg maxd ∈{distr ict1,distr ict2}(|population(d) - L|)
lessDevDistrict← district ∈ {district1, district2 | district , moreDevDistrict}

swappable← { v ∈ moreDevDistrict | v ∈ neighbors(lessDevDistrict)}
while swappable , ∅ do

minDevUnit← arg minu ∈swappable{ |population(moreDevDistrict)−L| |

IsSwappable(u, moreDevDistrict, lessDevDistrict) }

if minDevDistrict = ∅ then
break

end if
moreDevDistrict← moreDevDistrict \ { minDevUnit }

lessDevDistrict← lessDevDistrict ∪ { minDevUnit }

swappable← swappable \ { minDevUnit }

end while
if not tryingAgain then

break

end if
end while

end function

function IsSwappable(u, d1, d2)
return isContiguous(d1 \ {u}) and isContiguous(d2 ∪ {u})

end function

Fig. 6. Population swapping component: The population swapping component moves units from one
district to the other that improve the overall population deviation of the two-district partition. The component
continues to swap units until no beneficial swaps exist.

3.4 Maximization Function
Four variations of the two district partition are generated, one from each site based on the rectan-

gular envelope of the state geometry. A maximization function is used to select the best version

based on population deviation and compactness. We analyze different maximization functions

to determine which one produces the best result. The pseudocode is given in Figure 7. MinPop
selects the partition with the lowest population deviation, MaxCompact selects the partition with

the largest average of the Modified Schwartzberg compactness measure, and ValidCompact selects
the partition with the best average Modified Schwartzberg compactness score with a population

deviation less than or equal to 0.5% if available. Otherwise, it selects the same two-district partition

that would be chosen in the MaxCompact version. MinPop uses the full population swapping

component when run on tracts. The other versions use the partial population swapping component.

We analyze the results of these options and the full algorithm in the next section.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 13

function chooseBest(districtPossibilities, maxFunction)

switch maxFunction do
case MinPop

return argmin
districts∈districtPossibilities

populationDeviation(districts)

case MaxCompact
return argmax

districts∈districtPossibilities
avgModSchwartz(districts)

case ValidCompact
validDistricts← {districts ∈ districtPossibilities |

populationDeviation(districts) ≤ 0.005}
if validDistricts , ∅ then

return argmax
districts∈validDistricts

avgModSchwartz(districts)

else
return argmax

districts∈districtPossibilities
avgModSchwartz(districts)

end if
end function

Fig. 7. We examine three maximization functions: MinPop, MaxCompact, and ValidCompact. The full popula-
tion swapping component is only run for MinPop on census tracts. We select the two-district partition from
the four sites based on this maximization function.

4 EXPERIMENTAL RESULTS
We examined the effectiveness of our new algorithm by comparing the population deviation and

compactness scores against the Olson Algorithm and the current congressional districts. The

pseudocode descriptions of our algorithm can be found in Section 3 and the full code used to

generate these results is available online.
6
Information on the current congressional districts is also

available online [8].

We ran the algorithm on all 43 states containing more than one congressional district; these

represent large and small states by geography and population. We use the official census tract

and census block data for our algorithm [19] and modify the maps to create a connected graph of

population units. The following states required modifications to connect islands to the rest of the

state: California, Florida, Hawaii, Kentucky, New York, and Rhode Island. While other states have

geographic islands, the census population units cover some bodies of water. For example, Maryland

has some islands in the Chesapeake Bay, but there are existing population units that cover all of the

Chesapeake Bay. To modify a state that is unconnected, we create an extra population unit with

zero population that shares at least two coordinates with the unconnected units and the closest

connected parts of the state. Unless order is otherwise specified, we use the provided population

unit order in the census data in the experiments.

To calculate district compactness, we use the ConvexHull, Polsby-Popper, andModified Schwartzberg

measures, which are based on district shape, area, and perimeter [47]. Section 1.1 describes each

measure further. Since there is no universal measure of compactness, we use three measures to

show different kinds of compactness [68]. It is possible for a district to have a high Convex Hull

compactness score and low Polsby-Popper and Modified Schwartzberg scores (and visa versa).
7

6
https://github.com/newspapercentral/automated-congressional-redistricting

7
The three district measures were calculated using the Vivid Solutions Geometry package, which has built in methods for

these calculations [1].

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

https://github.com/newspapercentral/automated-congressional-redistricting

14 Levin and Friedler

The Polsby-Popper and Modified Schwartzberg measures have similar definitions, but we include

both for completeness. For each measure, we calculate the average of a state’s computed districts.

4.1 Divide and Conquer Redistricting Algorithm
We test multiple versions of the Divide and Conquer Redistricting Algorithm to understand the

impact of each component on the final results. We compare the effects of running the algorithm

based on census blocks versus census tracts, as well as the impact of the population swapping

component on the algorithm results. We examine all three maximization functions defined in

Section 3.4: MinPop, MaxCompact, and ValidCompact.

The results, shown in Figures 10, 11, and 12, give the resulting districting maps
8
as well as the

median population deviation, the median compactness scores, and the 25th and 75th percentiles

for each compactness score. The column labeled “No Pop Swaps" shows the results without the

population swapping component (including the modified Voronoi and contiguity swapping com-

ponents only) as compared to the results for the full algorithm (“Full Alg"). States with a single

district are shown in the map, but were excluded from the calculations since the district geometry

is simply the state geometry. (Alaska is a single district and is not shown on the maps.) Note that

many bodies of water are covered by the census population units and are assigned to districts.

Figures 8 and 9 provide population deviations and compactness scores for all of our algorithm

versions, the Olson Redistricting Algorithm, and the 113th congressional districts. Since the results

were run on the same states, we can compare the effectiveness of each algorithm component to the

Olson Redistricting Algorithm and actual districts.

As a feasibility check, we calculated the algorithm runtime. The algorithm took the least amount

of time for the MaxCompact version run on census tracts in New Hampshire without the swapping

component: 5s. The algorithm took the most amount of time for the MinPop version run on

census blocks in Texas with the swapping component:1d8h4m8s. The median runtime and standard

deviation across all results was 2m42s and 4h0m22s respectively. These runtimes are better than the

Olson Algorithm, which sometimes ran for over a week before finding a plan that met the criteria

[55]. Each state has more census blocks than tracts, so experiments with census blocks will have

larger runtimes. A full list of values is available online.
9
All the experiments were run on a Linux

machine with an Intel(R) Xeon(R) processor, CPU E5-1620 v2 at 3.70GHz, and 128GB of RAM.

4.1.1 Census blocks versus tracts. We test the Divide and Conquer Redistricting Algorithm on

census tracts and census blocks to demonstrate the impact of different population units. Census

tracts tend to have a larger area and a larger population than census blocks. While census tracts

typically range from 1,200 to 1,800 people [17], census blocks usually have less than 100 people,

and in many cases have zero people. Since census blocks are smaller, there are also more census

blocks than census tracts in each state, which increases the size of the congressional redistricting

problem.

Running the algorithm with census blocks improves the resulting districting’s population devi-

ation in almost every state. This is not surprising, since with smaller units an algorithm is more

likely to have possibilities open to it that allow summation to the desired population amount. Using

census blocks also improves the Convex Hull compactness measure in most states, while the impact

on the Polsby-Popper and Modified Schwartzberg measures are inconsistent. Census blocks are

smaller by perimeter and area than census tracts. Adding a new census block to a district will have

a minimal impact on the overall district shape, while a new census tract could significantly change

8
All results are available as equivalency files online: https://bitbucket.org/hlevin/redistricting-results

9
https://bitbucket.org/hlevin/redistricting-results

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

https://bitbucket.org/hlevin/redistricting-results

Automated Congressional Redistricting 15

Fig. 8. The changes in population deviation and compactness scores across algorithm versions illustrate
the impact of each component. The results show the median with the 25th and 75th percentile error bars.
Population deviations closer to 0% are preferred while compactness scores that are closer to 1 are preferred.
The population deviations were split into three charts for blocks, tracts, and tracts without population
swapping to account for different scales.

Fig. 9. We compare our results to the Olson Redistricting Algorithm and the actual districts as a benchmark
for our algorithm’s effectiveness.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

16 Levin and Friedler

Divide and Conquer Redistricting: Census Blocks, MinPop

Divide and Conquer Redistricting: Census Tracts, MinPop

Census Blocks Census Tracts
Measure Full Alg No Pop Swap Full Alg
Valid States (deviation < 0.5%) 42/43 19/43 41/43

Population Deviation Med (%) 0.00% 0.60% 0.02%

Population Deviation Med (people) 1 4,005 127

Convex Hull 25th Percentile 0.76296 0.73297 0.58767

Convex Hull Med 0.81714 0.76072 0.66362

Convex Hull 75th Percentile 0.86209 0.78885 0.73640

Polsby-Popper 25th Percentile 0.20278 0.22542 0.14579

Polsby-Popper Med 0.23686 0.25676 0.20019

Polsby-Popper 75th Percentile 0.27402 0.28161 0.24559

Schwartzberg 25th Percentile 0.44288 0.46605 0.37398

Schwartzberg Med 0.47477 0.50227 0.43874

Schwartzberg 75th Percentile 0.51713 0.52496 0.48407

Fig. 10. The results from running the Divide and Conquer Redistricting Algorithm on both census blocks
(top) and census tracts (bottom) using the MinPop maximization function.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 17

Divide and Conquer Redistricting: Census Blocks, MaxCompact

Divide and Conquer Redistricting: Census Tracts, MaxCompact

Census Blocks Census Tracts
Measure Full Alg No Pop Swap Full Alg
Valid States (deviation < 0.5%) 36/43 8/43 36/43

Population Deviation Med (%) 0.00% 1.84% 0.11 %

Population Deviation Med (people) 1 13,775 736

Convex Hull 25th Percentile 0.82189 0.72449 0.73293

Convex Hull Med 0.85537 0.78063 0.77731

Convex Hull 75th Percentile 0.87740 0.82690 0.81376

Polsby-Popper 25th Percentile 0.23476 0.26090 0.24178

Polsby-Popper Med 0.26598 0.30871 0.28837

Polsby-Popper 75 Percentile 0.30701 0.33692 0.32579

Schwartzberg 25th Percentile 0.47934 0.50370 0.48475

Schwartzberg Med 0.51140 0.55189 0.53229

Schwartzberg 75th Percentile 0.54979 0.57534 0.56395

Fig. 11. The results from running the Divide and Conquer Redistricting Algorithm on both census blocks
(top) and census tracts (bottom) using the MaxCompact maximization function.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

18 Levin and Friedler

Divide and Conquer Redistricting: Census Blocks, ValidCompact

Divide and Conquer Redistricting: Census Tracts, ValidCompact

Census Blocks Census Tracts
Measure Full Alg No Pop Swap Full Alg
Valid States (deviation < 0.5%) 42/43 23/43 41/43

Population Deviation Med (%) 0.00% 0.47% 0.06%

Population Deviation Med (people) 1 3,291 449

Convex Hull 25th Percentile 0.82489 0.72429 0.72583

Convex Hull Med 0.85929 0.77753 0.76874

Convex Hull 75th Percentile 0.87740 0.80296 0.81066

Polsby-Popper 25th Percentile 0.23476 0.22563 0.23141

Polsby-Popper Med 0.27517 0.27422 0.26915

Polsby-Popper 75th Percentile 0.30701 0.30421 0.31924

Schwartzberg 25th Percentile 0.47934 0.46613 0.47507

Schwartzberg Med 0.51961 0.51365 0.51129

Schwartzberg 75th Percentile 0.54979 0.54638 0.56034

Fig. 12. The results from running the Divide and Conquer Redistricting Algorithm on both census blocks
(top) and census tracts (bottom) using the ValidCompact maximization function.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 19

the districts shape. Since Convex Hull compactness measures overall district shape, it is logical that

census blocks would produce better Convex Hull scores.

4.1.2 Population swapping component impact. The Population Swapping component significantly

reduces the population deviation in every state across all versions. The component was designed to

reduce population deviation, so this is logical. The impact on compactness is inconsistent, although

negative the majority of the time. Since this component picks the next unit to swap without regard

for compactness, this inconsistency also makes sense.

4.1.3 Maximization function variations.

MinPop. The Divide and Conquer Redistricting Algorithm minimized for population deviation

produces valid plans in 42 out 43 states when run using census blocks and 41 out of 43 states when

run using census tracts (see Figure 10). The census blocks version produces the optimal population

deviations (1 person) in every state except New York, which generates results with 3.18%, making

this version one of the few algorithms in the literature that has a better population deviation

than the current districts in most states. However, the thin arc-shaped districts, most pronounced

in Michigan, may not offer a realistic boundary for practical application (the MaxCompact and

ValidCompact variants reduce the prevalence of these odd shapes). This version also has lower

compactness scores. The difference in compactness scores for the results without the population

swapping component compared to the full algorithm demonstrate how the population swapping

component significantly reduces compactness scores across all three measures.

MaxCompact. TheDivide andConquer RedistrictingAlgorithmmaximized forModified Schwartzberg

compactness produces valid plans in 36 out of 43 states for both blocks and tracts (see Figure 11). The

population deviation for blocks was three orders of magnitude smaller than population deviation

for tracts, and the thin arc-shaped districts in the previous version were addressed with the change

to the maximization function. This version also has higher compactness scores than any other

version of our Divide and Conquer Algorithm. However, this may be due in part to the invalid

population deviations that are greater than 50% in some states.

ValidCompact. The Divide and Conquer Redistricting Algorithm maximized for both population

deviation and Modified Schwartzberg compactness (ValidCompact) produces valid plans in 42 out

of 43 states for blocks and 41 out of 43 states for tracts (see Figure 12). The population deviation for

blocks is nearly identical to the MinPop version with a few cases with slightly worse population

deviation. Like the MinPop version, the ValidCompact version on blocks does not produce a valid

population deviation in New York and generates results with 3.19% population deviation. The algo-

rithm starts on Long Island, and runs out of swaps with the partial population swapping algorithm.

Since this part of New York is relatively narrow, there would be a limited number of swappable

units in the first level. The compactness scores are roughly identical to the MaxCompact version.

Overall, this approach produces the best combination of population deviation and compactness.

4.1.4 Recommended version. Our results demonstrate that near optimal population deviations are

only achievable with census blocks, and the ValidCompact version of the maximization function

produces strong compactness scores without significant impact to population deviation. Thus,

this is the recommended version of the Divide and Conquer Redistricting Algorithm that we will

compare to other approaches in the next section.

4.2 Comparison with other approaches
As detailed in Section 2, there is only one other algorithmwith valid population deviations (less than

0.5%) in most states and block equivalency files for all results, the Olson Redistricting Algorithm.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

20 Levin and Friedler

Comparison Districts: Olson Redistricting Algorithm

Comparison Districts: 113th Congressional Districts

Measure Olson 113th Districts D&C
Valid States (deviation < 0.5%) 39/43 40/43 42/43
Population Deviation Med (%) 0.07% 0.00% 0.00%
Population Deviation Med (people) 489 1 1
Convex Hull Med 0.88098 0.70298 0.85929

Convex Hull Stdev 0.05775 0.10324 0.07309

Polsby-Popper Med 0.33778 0.24088 0.27517

Polsby-Popper Stdev 0.06265 0.08992 0.07768

Schwartzberg Med 0.58080 0.48120 0.51961

Schwartzberg Stdev 0.05429 0.08971 0.07394

Fig. 13. Results for the Olson Redistricting Algorithm (top) and actual 113th congressional districts (bottom).
In the actual districts, Maryland, Virginia, and West Virginia are the states with population deviations greater
than 0.5%. The Divide and Conquer (D&C) measurements shown are for census blocks using ValidCompact
maximization. The best measurements in each row are shown in bold.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

Automated Congressional Redistricting 21

Here, we compare the Divide and Conquer Redistricting Algorithm to the Olson algorithm and the

113th real congressional districts.

Olson Redistricting Algorithm. The results for the Olson Redistricting Algorithm were calculated

based on the block equivalency files, which can be found online [55]. Using the census block

data, we merged the geometry and population data to reproduce the results so that metrics on

the population deviation and compactness scores could be calculated. The Olson Redistricting

Algorithm has a Vornoi-esque component and a swapping component. Sites are selected randomly

and districts are generated by iteratively adding surrounding units. Unlike our algorithm, the

swapping component allows swaps that make the population deviation worse. The criteria for

a good swap change throughout the execution, allowing swaps that make population deviation

worse while improving other criteria. This approach allows the algorithm to explore more possible

plans without getting stuck in a local optimum. We only report the final statistics in Figure 13

since we did not have access to intermediate results. We do not know how many executions were

examined in each state, nor the weights that were used. It is likely that different weights were used

in each state, which may explain the strong results. Out of 43 congressional redistricting plans

that were analyzed, 39 have valid population deviations. The worst population deviation is 0.78%,
which is slightly above the 0.5% goal. All three compactness scores are the highest among all the

versions compared in this analysis. While the Olson Redistricting Algorithm produces districts that

are more compact across the three measures, the ValidCompact version of the Divide and Conquer

Redistricting Algorithm operating on census blocks produces districts with a median population

deviation that is four orders of magnitude smaller.

113th Congressional Districts. To complete the context of the redistricting problem, it is also

appropriate to analyze actual congressional districts. A redistricting algorithm would not be useful

if it cannot at least match the metrics of the existing districts. Figure 13 provides a summary of the

population deviation and compactness scores for the 113th congressional districts. Most states have

districts with a population deviation near zero, and many have the optimal deviation, differing

only by one person [19]. Only Maryland, Virginia, and West Virginia have population deviations

larger than 0.5%.10 However, compactness scores across all three measures are lower than the

Olson Redistricting Algorithm and recommended version of the Divide and Conquer Redistricting

Algorithm.

5 CONCLUSION
We offer a new redistricting algorithm that produces an optimal population deviation in most states,

demonstrating a valid approach to a challenging real world problem. While the Olson Redistricting

Algorithm is consistently the best algorithm if compactness and population deviation are equally

weighted criteria, we argue that population deviation should be considered as a more important

criteria given that most of the actual districts have optimal or near zero population deviation.

We compared the components of each algorithm to show the tradeoffs of population deviation

and compactness. We also compare results with different population units, maximization functions,

and sites which suggest a similar trend. It may be impossible to improve both population deviation

and compactness, which has implications not only for redistricting algorithm design, but also for

electoral policy. Further study of redistricting algorithms should continue our component-based

approach to further explore this relationship between population deviation and compactness.

10
West Virginia has a long tradition of keeping counties in tact, and the U.S. Supreme Court ruled that this tradition justifies

the larger population deviation [53]. There has been extensive redistricting litigation in Maryland and Virginia since the

113th Congressional Districts [41].

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

22 Levin and Friedler

The selection of sites is a particular area that should be studied further. The literature and our

results demonstrate that the selection of sites significantly impacts the final results. Since our

algorithm would work with any site choices, different approaches may reveal different qualities of

our algorithm.

It is unlikely that a single redistricting algorithm will satisfy the needs of all states. Geography,

demographics, and policy preferences differ from state to state, so more variations in redistricting

algorithms could be beneficial. While we recommend one of the versions of our Divide and Conquer

Redistricting Algorithm, the alternate versions may be useful in cases where our recommendation

fails to produce a valid plan. In cases where local political needs necessitate that communities of

interest stay together, the population unit vertices making up the state graph can be modified to

allow this algorithm to run on merged communities of interest. Similarly, in cases where a few

contiguous districts should be redistricted while leaving the rest of the state as is, the algorithm can

be run with just the relevant substate graph. Thus, we believe the introduced divide and conquer

algorithm can be useful in conjunction with a human understanding of the specific redistricting

needs.

Redistricting algorithms, like the one we propose here, can have meaningful impact on policy.

In November 2016, a federal court ruled that partisan gerrymanders are unconstitutional and

struck down Wisconsin’s current districts [54, 66]. This landmark case was the first to strike down

districts based on partisan bias, and may mark a turning point in redistricting policy, forcing state

governments in several states to redraw their plans with reduced partisan bias [66]. This decision

referenced alternative plans as proof that less partisan plans were possible [54]. Clearly, a variety

of objective redistricting algorithms can facilitate the generation of alternative plans for this kind

of analysis.

It has not yet been determined how many states will be impacted by the growing legal case

against partisan gerrymandering, which has been building for some time [58]. If all states are forced

to redraw their districts with less partisan bias, there is an opportunity for redistricting algorithms

to supplement the debate. A redistricting plan from an automated algorithm may never be chosen

as the official districts, but these algorithms can set a better standard by showing mapmakers what

is possible.

REFERENCES
[1] 2016. Class Geometry. Retrieved March 1, 2016 from http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/

jts/geom/Geometry.html

[2] Alan I. Abramowitz, Brad Alexander, and Matthew Gunning. 2006. Incumbency, Redistricting, and the Decline of

Competition in U.S. House Elections. The Journal of Politics 68, 1 (2006), 75–88.
[3] Jeroen Aerts, Erwin Eisinger, Gerald Heuvelink, and Theodor Stewart. 2003. Using linear integer programming for

multi-site land-use allocation. Geographical Analysis 35, 2 (2003), 148–169.
[4] Micah Altman. 1997. Is automation the answer: The computational complexity of automated redistricting. Rutgers

Computer and Law Technology Journal 23, 1 (1997), 81–142.
[5] Theodore Arrington. 2016. A Practical Procedure for Detecting a Partisan Gerrymander. Election Law Journal 15, 4

(2016), 385–402.

[6] North Carolina General Assembly. 2017. House Select Committee on Redistricting. Retrieved January 10,

2018 from https://www.ncleg.net/gascripts/DocumentSites/browseDocSite.asp?nID=356&sFolderName=%5C2017%

20House%20Redistricting%20Plan%5CStat%20Pack%20for%20Proposed%20Plan

[7] De Assis, Laura Silva, Paulo Morelato Franca, and Fábio Luiz Usberti. 2014. A redistricting problem applied to meter

reading in power distribution networks. Computers & Operations Research 41 (2014), 65–75.

[8] Azavea. 2015. 2012 US Congressional Districts. Retrieved January 24, 2015 from https://www.google.com/fusiontables/

DataSource?snapid=S506424n-DY

[9] Azavea. 2018. District Builder. Retrieved January 9, 2018 from http://www.districtbuilder.org

[10] Kevin Baas. 2016. Auto-Redistrict. Retrieved June 28, 2016 from http://autoredistrict.org/contact.php

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/geom/Geometry.html
http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/geom/Geometry.html
https://www.ncleg.net/gascripts/DocumentSites/browseDocSite.asp?nID=356&sFolderName=%5C2017%20House%20Redistricting%20Plan%5CStat%20Pack%20for%20Proposed%20Plan
https://www.ncleg.net/gascripts/DocumentSites/browseDocSite.asp?nID=356&sFolderName=%5C2017%20House%20Redistricting%20Plan%5CStat%20Pack%20for%20Proposed%20Plan
https://www.google.com/fusiontables/DataSource?snapid=S506424n-DY
https://www.google.com/fusiontables/DataSource?snapid=S506424n-DY
http://www.districtbuilder.org
http://autoredistrict.org/contact.php

Automated Congressional Redistricting 23

[11] Fernando Bacao, Victor Lobo, and Marco Painho. 2005. Applying genetic algorithms to zone design. Soft Computing-A
Fusion of Foundations, Methodologies and Applications 9, 5 (2005), 341–348.

[12] Alex Benn and David German. 2008. Unbiased Congressional Districts. Retrieved November 20, 2013 from http:

//web.cs.swarthmore.edu/~adanner/cs97/s08/papers/benn_german.pdf

[13] Mira Bernstein and Moon Duchin. 2017. A Formula Goes to Court: Partisan Gerrymandering and the Efficiency Gap.

Notices of the AMS 64, 9 (2017), 1020–1024.
[14] Bill Bishop. 2008. The Big Sort: Why the Clustering of Like-Minded American is Tearing Us Apart. Houghton Mifflin

Harcourt, Boston.

[15] Nate Bottman, Wes Essig, and Sam Whittle. 2007. Why Weight? A Cluster-Theoretic Approach to Political Districting.

UMAP Journal 28, 3 (2007), 301–315.
[16] Burcin Bozkaya, Erhan Erkut, and Gilbert Laporte. 2003. A tabu search heuristic and adaptive memory procedure for

political districting. European Journal of Operational Research 144, 1 (January 2003), 12–26.

[17] Census Bureau. 2018. Geographic Terms and Concepts - Census Tract. Retrieved March 1, 2016 from http://www.

archives.gov/research/census/1940/finding-aids.html#maps

[18] F. Caro, T. Shirabe, M. Guignard, and A. Weintraub. 2004. School redistricting: Embedding GIS tools with integer

programming. Journal of the Operational Research Society 55, 8 (2004), 836–849.

[19] United States Census. 2015. United States Census. Retrieved January 31, 2015 from http://www.census.gov

[20] Jowei Chen and Jonathan Rodden. 2013. Unintentional Gerrymandering: Political Geography and Electoral Bias in

Legislatures. Quarterly Journal of Political Science 8, 3 (2013), 239–269.
[21] Jowei Chen and Jonathan Rodden. 2015. Cutting Through the Thicket: Redistricting Simulations and the Detection of

Partisan Gerrymanders. Election Law Journal 14, 4 (2015), 331–345.
[22] Vincent Cohen-Addad, Philip Klein, and Neal Young. 2018. Balanced power diagrams for redistricting. arXiv preprint

arXiv:1710.03358 (2018).
[23] Suzanne Dovi. 2017. Political Representation. In The Stanford Encyclopedia of Philosophy (fall 2017 ed.), Edward N.

Zalta (Ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2017/entries/

political-representation

[24] ESRI. 2018. GIS Dictionary. Retrieved January 15, 2018 from https://support.esri.com/en/other-resources/

gis-dictionary/term/envelope

[25] Brennan Center for Justice. 2018. Citizen-Led Efforts to Reform Redistricting. Retrieved January 4, 2018 from

https://www.brennancenter.org/analysis/current-citizen-efforts-reform-redistricting

[26] The United States District Court for the Middle District of North Carolina. 2018. Common Cause v. Rucho. Vol. 587. F.
Supp. 3d.

[27] Andrew Gelman and Gary King. 1994. Enhancing Democracy through Legislative Redistricting. American Political
Science Review 88, 3 (1994), 541–559.

[28] Gerrymander. 2019. Cambridge Academic Content Dictionary. Cambridge University Press.

[29] David J. Gopoian and Darrell M. West. 1984. Trading Security for Seats: Strategic Considerations in the Redistricting

Process. Journal of Politics 46, 4 (1984), 1080–1096.
[30] R. L. Graham. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math. 17, 2 (March 1969), 416–429.

[31] Dan Gulotta, Daniel M. Kane, and Andrew Spann. 2007. Electoral Redistricting with Moment of Inertia and Diminishing

Halves Models. UMAP Journal 28, 3 (2007), 281–299.
[32] Brian Hayes. 1996. Machine Politics. American Scientist 84, 6 (1996), 522–526.
[33] John A. Henderson, Brian T. Hamel, and Aaron Goldzimer. 2017. Gerrymandering Incumbency: Does Non-Partisan

Redistricting Increase Electoral Competition? The Journal of Politics 80, 3 (2017), 1011–1016.
[34] S. Hess, H. Siegfldt, J. Whelan, and P. Zitlau. 1965. Nonpartisan Political Redistricting by Computer. Operations Research

13, 6 (November 1965), 998–1006.

[35] Deepti Joshi, Leen-Kiat Soh, and Ashok Samal. 2012. Redistricting Using Constrained Polygonal Clustering. IEEE
Transactions on Knowledge and Data Engineering 24, 11 (November 2012), 2065–2079.

[36] Henry Kaiser. 1966. An Objective Method for Establishing Legislative Districts. Midwest Journal of Political Science 10,
2 (May 1966), 200–213.

[37] Jorg Kalcsics, Stefan Nickel, and Michael Schroder. 2005. Towards a unified territorial design approach - Applications,

algorithms and GIS integration. Top 13, 1 (2005), 1–56.

[38] Narenda Karmarkar and Richard M Karp. 1982. The Differencing Method of Set Partitioning. Technical Report UCB/CSD
81/113, Computer Science Division University of California, Berkeley (1982).

[39] Justin Levitt. 2008. “Communities of Interest” in State Redistricting Law. Retrieved October 14, 2016 from http:

//www.brennancenter.org/sites/default/files/legacy/commentary/Communities%20of%20Interest.pdf

[40] Justin Levitt. 2010. A Citizen’s Guide to Redistricting. Brennan Center for Justice.

[41] Justin Levitt. 2018. All About Redistricting. Retrieved February 11, 2018 from http://redistricting.lls.edu

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

http://web.cs.swarthmore.edu/~adanner/cs97/s08/papers/benn_german.pdf
http://web.cs.swarthmore.edu/~adanner/cs97/s08/papers/benn_german.pdf
http://www.archives.gov/research/census/1940/finding-aids.html#maps
http://www.archives.gov/research/census/1940/finding-aids.html#maps
http://www.census.gov
https://plato.stanford.edu/archives/win2017/entries/political-representation
https://plato.stanford.edu/archives/win2017/entries/political-representation
https://support.esri.com/en/other-resources/gis-dictionary/term/envelope
https://support.esri.com/en/other-resources/gis-dictionary/term/envelope
https://www.brennancenter.org/analysis/current-citizen-efforts-reform-redistricting
http://www.brennancenter.org/sites/default/files/legacy/commentary/Communities%20of%20Interest.pdf
http://www.brennancenter.org/sites/default/files/legacy/commentary/Communities%20of%20Interest.pdf
http://redistricting.lls.edu

24 Levin and Friedler

[42] Michael Lyons and Peter F. Galderisi. 1995. Incumbency, Reapportionment and U.S. House Redistricting. Political
Research Quarterly 48, 4 (1995), 857–871.

[43] Karin MacDonald and Bruce Cain. 2013. Community of Interest Methodology and Public Testimony. UC Irvine Law
Review 3 (2013), 609–636.

[44] William Macmillan. 2001. Redistricting in a GIS environment: An optimisation algorithm using switching-points.

Journal of Geographical Systems 3, 2 (2001), 167–180.
[45] William Macmillan and Todd Pierce. 1994. Optimization modelling in a GIS framework: the problem of political

redistricting. In Spatial analysis and GIS, Stewart Fotheringham and Peter Rogerson (Eds.). TJ International Ltd, Great

Britain, Chapter 11, 221–246. https://plato.stanford.edu/archives/win2017/entries/political-representation

[46] Daniel B. Magleby and Daniel B. Mosesson. 2018. A New Approach for Developing Neutral Redistricting Plans. Political
Analysis 26, 2 (May 2018), 147–167.

[47] Daniel McGlone. 2016. Measuring District Compactness in PostGIS. Retrieved March 2, 2019 from http://www.

newswithnumbers.com/2010/02/04/gerrymandering-and-the-2010-census/#Detail

[48] Stuart Nagel. 1965. Simplified Bipartisan Computer Redistricting. Stanford Law Review 17, 5 (May 1965), 863–899.

[49] Chicago-Kent College of Law. 2014. Wesberry v. Sanders. Retrieved April 24, 2014 from http://www.oyez.org/cases/

1960-1969/1963/1963_22

[50] State of Minnesota Special Redistricting Panel. 2011. Order Denying Request to Participate as Amicus. In Congressional
Redistricting Plans. Minnesota Judicial Branch. http://www.mncourts.gov/Documents/0/Public/Court_Information_

Office/2011Redistricting/A110152AmendedOrder9.13.11.pdf

[51] Maryland Department of Planning. 2011. 2011 Governor’s Redistricting Advisory Committee. Retrieved January

9, 2018 from https://web.archive.org/web/20121115091642/http://www.planning.maryland.gov:80/PDF/redistricting/

2010docs/Guidelines3rdpartyplan2011.pdf

[52] The Supreme Court of the United States. 1964. Wesberry v. Sanders. Vol. 376. U.S.
[53] The Supreme Court of the United States. 2012. Tennant v. Jefferson County Commission. Vol. 576. U.S.
[54] The Supreme Court of the United States. 2016. Whitford v. Gill. Vol. 585. U.S.
[55] Brian Olson. 2013. Redistricter. Retrieved October 28, 2013 from http://code.google.com/p/redistricter/

[56] Federica Ricca, Andrea Scozzari, and Bruno Simeone. 2008. Weighted Voronoi region algorithms for political districting.

Mathematical and Computer Modelling 48 (2008), 1468–1477.

[57] Federica Ricca, Andrea Scozzari, and Bruno Simeone. 2011. Political districting: from classical models to recent

approaches. Annals of Operations Research 204, 1 (2011), 271–299.

[58] Terry Smith. 2016. Bond V. Floyd And Expressive Proscriptions On The Partisan Gerrymander. Wisconsin Law Review
(2016), 122–145.

[59] David Sparks. 2016. K-Means Redistricting. Retrieved June 28, 2016 from https://dsparks.wordpress.com/2010/10/18/

k-means-redistricting/

[60] Nicholas Stephanopoulos and Eric McGhee. 2015. Partisan gerrymandering and the efficiency gap. The University of
Chicago Law Review 82 (2015), 831–900.

[61] Lukas Svec, Sam Burden, and Aaron Dilley. 2007. Applying Voronoi Diagrams to the Redistricting Problem. UMAP
Journal 28, 3 (2007), 315–331.

[62] Edward R. Tufte. 1973. The relationship between seats and votes in two-party systems. American Political Science
Review 67, 2 (1973), 540–554.

[63] Leonardo Vanneschi and Roberto Henriques Mauro Castelli. 2017. Multi-objective genetic algorithm with variable

neighbourhood search for the electoral redistricting problem. Swarm and Evolutionary Computation 36 (2017), 37–51.

[64] Range Voting. 2013. Examples of our unbiased district-drawing algorithm in action / comparisons with gerrymandered

districts drawn by politicians. Retrieved October 28, 2013 from http://rangevoting.org/GerryExamples.html

[65] Samuel Wang. 2016. Three tests for practical evaluation of partisan gerrymandering. Stanford Law Review 68 (June

2016), 1263–1321.

[66] Michael Wines. 2016. Judges Find Wisconsin Redistricting Unfairly Favored Republicans. The New York Times
(November 2016).

[67] Antoine Yoshinaka and Chad Murphy. 2011. The paradox of redistricting: How partisan mapmakers foster competition

but disrupt representation. Political Research Quarterly 64, 2 (2011), 435–447.

[68] H. P. Young. 1988. Measuring the Compactness of Legislative Districts. Legislative Studies Quarterly 13, 1 (February

1988), 105–115.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: March 2019.

https://plato.stanford.edu/archives/win2017/entries/political-representation
http://www.newswithnumbers.com/2010/02/04/gerrymandering-and-the-2010-census/#Detail
http://www.newswithnumbers.com/2010/02/04/gerrymandering-and-the-2010-census/#Detail
http://www.oyez.org/cases/1960-1969/1963/1963_22
http://www.oyez.org/cases/1960-1969/1963/1963_22
http://www.mncourts.gov/Documents/0/Public/Court_Information_Office/2011Redistricting/A110152AmendedOrder9.13.11.pdf
http://www.mncourts.gov/Documents/0/Public/Court_Information_Office/2011Redistricting/A110152AmendedOrder9.13.11.pdf
https://web.archive.org/web/20121115091642/http://www.planning.maryland.gov:80/PDF/redistricting/2010docs/Guidelines3rdpartyplan2011.pdf
https://web.archive.org/web/20121115091642/http://www.planning.maryland.gov:80/PDF/redistricting/2010docs/Guidelines3rdpartyplan2011.pdf
http://code.google.com/p/redistricter/
https://dsparks.wordpress.com/2010/10/18/k-means-redistricting/
https://dsparks.wordpress.com/2010/10/18/k-means-redistricting/
http://rangevoting.org/GerryExamples.html

	Abstract
	1 Introduction
	1.1 Redistricting Problem Definition
	1.2 Results

	2 Background Literature
	2.1 Partitioning Algorithms
	2.2 Swapping Algorithms
	2.3 Limitations of Existing Approaches

	3 Divide and Conquer Redistricting Algorithm
	3.1 Voronoi Component
	3.2 Contiguity Swapping
	3.3 Population Swapping Component
	3.4 Maximization Function

	4 Experimental Results
	4.1 Divide and Conquer Redistricting Algorithm
	4.2 Comparison with other approaches

	5 Conclusion
	References

