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ABSTRACT
The study of influence maximization in social networks has largely

ignored disparate effects these algorithms might have on the in-

dividuals contained in the social network. Individuals may place

a high value on receiving information, e.g. job openings or adver-

tisements for loans. While well-connected individuals at the center

of the network are likely to receive the information that is being

distributed through the network, poorly connected individuals are

systematically less likely to receive the information, producing a

gap in access to the information between individuals. In this work,

we study how best to spread information in a social network while

minimizing this access gap.

We propose to use the maximin social welfare function as an

objective function, where we maximize the minimum probability of

receiving the information under an intervention. We prove that in

this setting this welfare function constrains the access gap whereas

maximizing the expected number of nodes reached does not. We

also investigate the difficulties of using the maximin, and present

hardness results and analysis for standard greedy strategies. Finally,

we investigate practical ways of optimizing for the maximin, and

give empirical evidence that a simple greedy-based strategy works

well in practice.

CCS CONCEPTS
• Networks → Online social networks; • Information sys-
tems → Social recommendation; • Theory of computation →

Graph algorithms analysis.
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1 INTRODUCTION
Information flow in networks has been a subject of extensive study.

Among the many motivations for the study of how information

propagates in a network has been advertising (how can we spread

information most effectively on a budget) and clustering (how do

groups form and organize in a network).

One of the most important questions in this area is how to maxi-

mize influence in a social network. Here the goal is to choose where

to place initial sources of information so as to maximize the flow of

information via word-of-mouth. First formalized by Kempe, Klein-

berg, and Tardos [21], there has been a long series of work in the

literature on influence maximization.

However, this work has not typically focused on the impact that

the information has on the individuals in the network. For example,

one important application of information flow in networks is for

recruitment. Social networks like LinkedIn are increasingly used to

provide access to jobs and information that can greatly impact an

individual’s career development. Often just as important as the indi-

viduals themselves are the connections between individuals – their

social networks – in making hiring decisions. This is because infor-

mation transmitted amongst social networks may accrue amongst

the best-connected individuals in the network. As the adage goes,

“it’s not what you know, but who you know.” With more and more

of our social life mediated through online networks, the role that

networks play in opening up opportunities is increasingly impor-

tant. This includes not only recruitment, but also advertising and

other kinds of marketing.

However, network structure can create haves and have-nots in

the game of access. Insiders who are well-connected in the network

have easier access to relevant information about opportunities

for advancement that can in turn lead to even better connections.

Outsiders who lack access to such information will find it much

harder to improve their network status. This access gap may lead

to a form of inequality that is different from the traditional forms

of inequality based on class, race, gender, or other attributes, but

nonetheless provides a significant challenge.

Thus, we are concerned with each individual’s access to infor-

mation and not just the number of people reached or the amount of

information being distributed. Howmight we ensure that the access

gap in information is reduced? Rather than asking how far we can

spread information on a budget, we instead ask which people are

getting the information we’re spreading.
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1.1 Our Work
How can we formulate a notion of equitable access to information

in a network, and how might we intervene in a network (on a

budget) to minimize the gap in access to information? In particular,

we examine how best to add seeds (individuals who start with the

information) to a network to minimize this gap in access.

We propose a new measure of access in a network. In contrast

to previous work that maximizes the average probability that an

individual receives the information (max reach), we instead pro-

pose to maximize the minimum probability. We formalize access

as a social welfare function that assigns a real value to the set of

utilities received by the individuals, in this case the probabilities of

receiving the information. This allows us to evaluate the notions

of access themselves: we consider a notion of access to be better if

interventions that optimally maximize that notion do not widen the

access gap. We show that every notion of access (amongst a wide

class of such functions) does to some degree permit the access gap

to increase in the worst case. On the other hand, if the access gap

increases between two groups of individuals after an intervention,

we show that our proposed notion of access at least prohibits situa-

tions where the access does not increase at all for the group which

started off with less access to the intervention. Perhaps surprisingly,

we show in Section 3 that a very large class of natural notions of

access (including maximum reach) does not have this very basic

prohibition. We desire this because without such a prohibition, in

the worst case there’s nothing stopping interventions from creating

one permanently and significantly advantaged group with access

to information and one group without any such access, which we

regard as blatantly undesirable.

We show that maximizing the minimum probability is NP-hard,

hard even to approximate well, and moreover that a number of

standard greedy strategies have asymptotically worst-possible ap-

proximation ratios. Nonetheless, we show via experiments that

a very simple greedy strategy performs well in practice: namely,

choose the seeds to be the vertices currently estimated as having

the smallest probabilities of receiving the information. We also

demonstrate that by using this strategy, we decrease the correlation

between vertices’ probability of receiving the information and their

location in the network, indicating that our measure of access is

not merely a proxy for (static) network structure.

Limitations. We recognize that asking to maximize the minimum

probability of access to information ignores the fact that not all in-

dividuals in a network might need a particular piece of information.

For example, a hiring ad should be spread widely, but only to candi-

dates who are eligible, are in the right geographic areas, and have

desirable qualifications. More generally, interventions to improve

access to information might themselves cause feedback loops (both

virtuous and vicious): our work does not consider those dynamics.

Nor does our work consider other notions of utility, like those that

take into account the benefits of receiving the information more

than once. We leave study of these issues for future work.

In summary, our main contributions are as follows.

• We propose a new measure of information access in a net-

work. We demonstrate that this measure captures certain

axiomatically desirable properties of any notion of equal

access, and further that existing notions including the well-

studied maximum reach concept do not.

• We investigate the problem of maximizing access theoreti-

cally, presenting hardness results as well as analysis of stan-

dard greedy strategies.

• We do a comprehensive empirical evaluation of heuristics

for achieving a high level of access, demonstrating that a

greedy-based strategy is quite effective at improving equality

of access in a network for a given budget of interventions.

1.2 Related Work
Granovetter’s seminal work on the strength of weak ties [16] first

broached the idea that network position can confer advantages or

disadvantages (including in hirings scenarios). Indeed, weak ties

can influence success in hiring and careers [15]. In an algorithmic

setting, boyd, Levy, and Marwick [4] illustrate how modern social

networks like LinkedIn might be vehicles for a more direct propaga-

tion of advantage and disadvantage. In that light, our work, which

focuses on how tomitigate such effects in the context of information

access, falls into the paradigm explored by fairness-aware decision-

making in which the goal is to design decision-making systems that

ensure the end result is non-discriminatory to individuals or groups

of individuals. Our work can be viewed as an attempt to quantify

one aspect of social capital, a notion introduced by Coleman [7] to

capture how social standing within a system could be interpreted

as a resource that has utility for an agent. Recently, Benthall and

Haynes [3] consider how to use a social network to define racial

aspects of social standing, but don’t consider interventions in the

social network.

Rather than directly model an explicit fair goal for a decision in

this setting, via assuming we have access to a sensitive feature like

race on which we would focus our attention, we instead model the

utility that each individual receives. This formalizes how best to

optimize for access to information without necessarily requiring

equal access. While most of the literature in algorithmic fairness

uses equality-based definitions [9–11, 18, 27, 33, 36] (typically ei-

ther group fairness or individual fairness), the welfare approach

to fairness that we use is starting to become more popular. For

example, Heidari et al. [19] propose a specific welfare function to

use for classification and regression problems.

Our choice of welfare function is based on axiomatic considera-

tions: by determining which functions satisfy specific mathematical

criteria used to model gaps in access. The resulting function that

seeks to maximize the minimum probability of receiving informa-

tion bears some resemblance to the difference principle outlined by

Rawls [30], in that it seeks to intervene so as to provide benefit

to the “least-advantaged”, here interpreted as those with the least

probability of access.

Our work relies on a framework for information propagation

that comes from the broad area of influence maximization. Influ-
ence maximization seeks ways to spread information in a network

efficiently using a small collection of seeds. The typical measure

of information spread used is the expected number of nodes that

receive the information (the max reach measure). While influence

maximization assigns the same utility to an individual as we do,



the welfare function in that setting is just the sum of the individ-

ual utilities. This utilitarian approach was initiated by Domingos

and Richardson [31] and is formalized as a discrete optimization

problem in Kempe, Kleinberg, and Tardos [21]. There is also work

into making this process faster [5, 34] or suitable for more general

situations, where factors like pricing must be taken into account [2].

A related body of algorithmic work [12, 25, 26] posits that one

way to decrease polarization in social networks is to connect people

with opposing views by exposing them to new information. Such

work differs in focus and approach to modeling from this work

because that work is concerned with poor connectivity between

communities and we are concerned with individuals who are simply

poorly connected.

2 DEFINITIONS
Let G be a graph with n nodes. To describe information flow in

G we will use a standard probabilistic model for how information

travels – the independent cascade (IC) model [21]. In this model, a

node either possesses information or not. A set of seed nodes start

out with the information, and information flow proceeds in rounds.

Each newly informed node v informs its neighbors u in the next

round i.i.d. with probability of transmission αu,v . Once a node is
informed, it stays informed, and no longer passes on the message.

In this work, we will use the IC model with a fixed probability α of

transmission.

Welfare Functions. In the IC model with parameter α , we can
associate with each vertex v the probability pv that v is informed

after all information has been passed.We now define a social welfare

function µ : [0, 1]n → R to represent how effectively information is

spread: it takes as input the probability of infection for each vertex,

and outputs the overall welfare.

Definition 1. The welfare of a set of verticesV = {v1, . . . ,v |V |}
in G with seed set S is µG (S,V ) = µ(pv1

, . . . ,pv |V | ). If V is all n
vertices, we abbreviate this as µG (S).

When the graph is clear from context, we will omit the subscript G
and write µ(S,V ) and µ(S) respectively.

Seed sets represent an intervention in the information network.

Thus, a primary goal in the study of information flow is to find

a budgeted intervention: a set of seeds S+ of size no more than k
for a given graph G (possibly with initial seeds S) with maximum

welfare

S∗ = argmax

S+∪S :
|S | ≤k

µG (S+ ∪ S).

In other words, S∗ is the initial seeds S along with a set of k vertices

which maximizes access for G. Later, we will also consider the set

of seeds that maximize welfare for a particular set of vertices:

SV = argmax

S+∪S :
|S | ≤k

µG (S+ ∪ S,V ).

Kempe, Kleinberg, and Tardos [21] and subsequent work use as

their welfare function reach, the expected number of nodes reached.

In our notation, and normalizing to make it conveniently [0, 1]-
valued, this becomes the following:

Definition 2 (Reach). µreach(S,V ) = 1

|V |
∑
v ∈V pv .

We can easily generalize this to awider class of notions of welfare.

We consider generalized means:

Definition 3 (ϕ-mean). µϕ (S,V ) =
(

1

|V |
∑
v ∈V p

ϕ
v

)
1/ϕ

.

Note in the limit, this becomes the geometric mean for ϕ = 0,

the minimum for ϕ = −∞, and the maximum for ϕ = +∞. In other

words, µ−∞(S,V ) = minv ∈V pv .
We say that a function µG (S,V ) = µ(x1, . . . ,xm ), each xi ∈ [0, 1]

representing the probability that a node i receives the information,

is monotonically increasing if µ(x1, . . . ,xm ) ≥ µ(x ′
1
, . . . ,x ′m ) when

xi ≥ x ′i for all i . A function µ is strictly monotonically increas-
ing if µ(x1, . . . ,xm ) > µ(x ′

1
, . . . ,x ′m ) when xi ≥ x ′i for all i and

in addition there is some j such that x j > x ′j . µ is symmetric if
µ(x1, . . . ,xm ) = µ(xσ (1), . . . ,xσ (m)) for all permutations σ .

In this work, we restrict our attention to symmetric, monotoni-

cally increasing welfare functions so that no vertex is privileged

above the others and, all else equal, increasing an individual’s

probability of receiving the information is never undesirable. The

ϕ-means are such functions. Moreover, if a continuous welfare

function satisfies four natural conditions (symmetry, strictly mono-

tonically increasing, independence of unconcerned agents, and

independence of common scale
1
) as a consequence of the Debreu-

Gorman theorem [8, 14] the only such welfare functions up to

ordering over preferences are the ϕ-means [19, 32], as long as all

probabilities are non-zero. In other words, at least in the case of

connected undirected graphs, ϕ-means are an extremely wide class

of symmetric, monotonically increasing welfare functions, making

them a natural class to examine.

3 GAPS IN ACCESS
Optimizing a welfare function is a way to improve access to infor-

mation in the aggregate. But our concern in this work is whether

individuals or subgroups are being left behind in the process. Is

it possible that even though an aggregate measure of information

access is increasing, the gap in information access between groups

is getting larger? In this section, we will focus on evaluating welfare

functions with respect to information access properties we would

like to ensure.

We now define the access gap, which captures how much better

some individuals are doing than others.

Definition 4. The access gap of a (non-trivial) partitionV ,V ′ of
the vertices of a graphG with seed set S under a welfare function µ is

µ(S,V ) − µ(S,V ′).

Note we only define the access gap over bipartitions, rather than

arbitrary subsets. This is to prevent the following situation: Given

a partition V1,V2,V3 of G and initial seed set S , suppose µ(S,V1) =
µ(S,V2) are both very large, but µ(S,V3) is much smaller. Consider

S∗, the optimal seed set for this graph, and suppose now µ(S∗,V1) >
µ(S∗,V2) = µ(S∗,V3). We now have a gap between the access of V1
andV2, but this gap was a by-product of significantly increasing the

1
Independence of common scale means that the ordering over alternatives should

not change when multiplying each probability by a common positive factor, and

independence of unconcerned agents means that the ordering should be independent

of a probability that doesn’t change, i.e. if µ(x, x1, . . . , xm ) ≥ µ(x, x ′
1
, . . . , x ′m ),

then µ(y, x1, . . . , xm ) ≥ µ(y, x ′
1
, . . . , x ′m ) for all y .



Figure 1: Example showing that the rich can get richer under
the optimal intervention. If only one additional seed may
be added, it isv2 for any monotonic welfare measure. Under
this intervention, the access gap between {v1,v2} and {v3,v4}
(the two colored sets) widens.

access ofV3. Since this may well be desirable behavior, we preclude

this situation by only considering gaps between bipartitions.

In particular, we want to know when the access gap increases.

We call this the rich getting richer phenomenon.

Definition 5 (Rich get richer). In a graph G with initial seeds
S under a welfare function µ, we say that the rich get richer if there
is a (non-trivial) partition V ,V ′ where the optimal intervention S∗

satisfies

µ(S∗,V ′) − µ(S∗,V ) > µ(S,V ′) − µ(S,V ) > 0.

Unfortunately, stopping the rich from getting richer in arbitrary

graphs may be too much to hope for. Even simple examples show

that under many notions of welfare, including all ϕ-means, the rich

get richer.

Proposition 3.1. Suppose µ is symmetric, increasing, and satisfies
the following condition: For any x1, . . . , xm in [0, 1], there is some
1 ≤ ϕ < ∞ such that

min

i
xi ≤ µ(x1, . . . ,xm ) ≤

(
1

m

m∑
i=1

x
ϕ
i

)
1/ϕ

.

Then under µ, when 0 < α < 1

2ϕ , there exists a graph and initial seed
set where the rich get richer.

Note that the upper bound in this third condition is easy to

satisfy; it suffices that µ(x1, . . . ,xm ) is strictly less than maxi xi
when not all of the xi are equal to each other. In addition the

assumption that ϕ ≥ 1 is only assumed for the sake of convenience,

since

(
1

m
∑
x
ϕ
i

)
1/ϕ

is monotonic in ϕ.

Proof. Consider the example graphG in Figure 1 and suppose

0 < α < 1. Let V = {v3,v4} and V ′ = {v1,v2}. Note that pv1
=

1, pv2
= α , and pv3

= pv4
= α2. Then µ(S,V ) = µ(pv3

,pv4
) =

µ(α2,α2) = α2. Yet µ(S,V ′) = µ(1,α) ≥ α > α2, so we have

µ(S,V ′) > µ(S,V ).
What is the optimal seed to add? If we add v2 to the seeds, then

we have pv1
= pv2

= 1 and pv3
= pv4

= α . Otherwise, if we
add v3 to the seeds, then pv1

= pv3
= 1, pv2

= α , and pv4
= α2.

Note µ(1, 1,α ,α) ≥ µ(1,α , 1,α2) by symmetry and monotonicity,

so without loss of generality the optimal modification is to makev2
a seed. Then it is easy to calculate µ(S∗,V ′) − µ(S∗,V ) = µ(1, 1) −
µ(α2,α2) = 1 − α2. Thus we have the rich getting richer if 1 − α >

µ(1,α) − α2. But µ(1,α) ≤
(
1+αϕ
2

)
1/ϕ

, so it suffices to show that

1+αϕ
2
<

(
1 − α + α2

)ϕ
. Then since ϕ ≥ 1 and 0 < α < 1

2ϕ ,

1 + αϕ

2

≤ 1 + α

2

< 1 − ϕα + ϕα2 ≤ (1 − α + α2)ϕ .
□

Proposition 3.1 holds for all ϕ-means for ϕ < ∞. We will show

in Section 3.1 that the rich get richer not only for the +∞-mean but

a whole other class of welfare functions as well (a consequence of

Proposition 3.2). Given this, keeping the rich from getting richer

appears to be too much to hope for.

3.1 k-imbalance
If we can’t keep the rich from getting richer in the worst case, what

can we prevent? A particularly concerning case of the rich getting

richer is when the access of the worse-off groupV doesn’t improve

at all. That is, a case where µ(S,V ′) > µ(S,V ) under the initial seeds
S and the rich get richer, but for the set of seeds S∗ that maximize

welfare µ(S∗,V ) ≤ µ(S,V ). This might not be so bad if the only

way to improve the access of V is to increase the access of V to the

point where it is even higher than that of V ′, so that V ′ becomes

the worse-off group. On the other hand, this situation becomes

particularly egregious when in addition µ(SV ,V ) ≤ µ(S,V ′), i.e. the
optimal improvement for V still does not improve the access of V
to the point where it is larger than the access that V ′ started out

with prior to intervention (recall that SV – defined in Section 2 – is

the seed set that maximizes reach for V ). If this can happen when

adding k seeds, we will call µ k-imbalanced. That is, k-imbalance is

a particularly egregious form of the rich getting richer. If µ is not

k-imbalanced for any k > 0, we will call it balanced.
We believe that balance is a natural desideratum because it pre-

vents interventions from never helping the worse-off group at all.

Stronger versions of preventing disparity in access may still be

preferred, like avoiding the rich from getting richer, so balance

may only represent a necessary but not sufficient condition for

preventing disparity. In this section, we show a wide class of µ are

Ω(n)-imbalanced, but that µ−∞ is balanced.

Definition 6 (k-imbalance). Awelfare function µ isk-imbalanced

if there exists a graph G with initial seed set S and partition of the
vertices V and V ′ where the optimal intervention S∗ and optimal in-
tervention for SV under the addition of no more than k seeds satisfies
the following:

(1) µ(S,V ) < µ(SV ,V ) (There is a set of seeds to add that im-

proves the access of V .)

(2) µ(SV ,V ) ≤ µ(S,V ′) (Not only does V ′ start off with more

access than V , but V ′ starts off with more access than V can

possibly achieve.)

(3) µ(S∗,V ′) > µ(S,V ′) (The access of V ′ improves.)

(4) µ(S∗,V ) ≤ µ(S,V ) (The access of V does not improve.)

In other words, a welfare function is imbalanced if

µ(S∗,V ) ≤ µ(S,V ) < µ(SV ,V ) ≤ µ(S,V ′) < µ(S∗,V ′).
Note that it is immediate that if µ is k-imbalanced for any k > 0,

then the rich get richer under µ. As k increases, it should be the

case that it becomes more difficult to find examples of imbalance,

as it is harder to avoid improving the access ofV ′. Nonetheless, we
can show that a wide class of welfare functions, including reach, is

Ω(n)-imbalanced:



Proposition 3.2. Suppose µ is symmetric and strictly increasing.
Then µ is Ω(n)-imbalanced.

Proof. It suffices to consider the simplest case: when there is

no communication, i.e. G is the disjoint graph of n vertices. V and

V ′ will each be exactly half of the vertices (for n even). The initial

seed set S will be entirely contained in V ′ and will be size n/4.
Now we will add an additional n/4 seeds. Note first that since µ is

symmetric, each of the vertices (with the exception of the initial

seeds) are identical. So SV is any set of n/4 additional seeds in

V : each additional seed must improve the welfare of V because µ
is strictly increasing. But in this case, V and V ′ become identical,

so we have µ(S,V ) < µ(SV ,V ) ≤ µ(S,V ′). But by symmetry, the

optimal seeds to add can be any n/4 vertices, in which case we can

assume they are all in V ′. Thus the welfare of V does not increase

while the welfare of V ′ does. □

It turns out that balance is a useful definition, insomuch as it is

actually possible to achieve.

Proposition 3.3. µ−∞ is balanced.

Proof. Suppose µ−∞ is imbalanced, witnessed by some parti-

tion V ,V ′ of G and initial seed set S . Recall imbalance implies that

µ−∞(S,V ) < µ−∞(S,V ′). Then by definition of µ−∞, the vertex v
with minimum probability is in V , i.e. µ−∞(S) = µ−∞(S,V ). Re-
member S∗ maximizes the minimum probability, and µ−∞(SV ,V ) >
µ−∞(S,V ), so there is at least one graph that increases that mini-

mum probability, which in turn means that S∗ does as well. Thus
µ−∞(S∗,V ) > µ−∞(S,V ), a contradiction. □

On the other hand, µ−∞ is a special case, and every other ϕ-
mean is maximally imbalanced: there exists a graph, initial seed

set, and partition of the vertices that verifies the other ϕ-means are

imbalanced.

Proposition 3.4. For ϕ > −∞,α < 1, µϕ is Ω(n)-imbalanced.

Proof. If ϕ = +∞, so µϕ is the maximum probability, then as

soon as the graph has at least one seed, then µϕ (S) = 1, and any

added seeds after that don’t change the value, so µϕ is trivially

Ω(n)-imbalanced. Otherwise, if ϕ > 0, µϕ is strictly increasing, and

from Proposition 3.2 we know it is Ω(n)-imbalanced. And if ϕ ≤ 0,

then µϕ is strictly increasing once all probabilities are non-zero, at

which point we use a similar tactic to when µ is strictly increasing,

except we will need a connected graph. We will use the star graph,

with one central vertex the seed, and all other vertices connected

to that seed. In addition there will be some n/2− 1 additional seeds,
all in V ′, which consists of those seeds, the central seed, plus n/2
more vertices. V will be the other n vertices, so that G is 2n nodes.

Our goal will be to add an additional n/2 seeds. Remember, sinceG
is connected (all vertices have non-zero probability) µϕ is strictly

increasing. Then the optimal graph forV is to add all n/2 additional
seeds to V , in which case we have n/2 vertices with probability 1

and n/2 vertices with probability α . ButV ′ inG is exactly the same,

so we have µ(S,V ) < µ(SV ,V ) ≤ µ(S,V ′). However, all non-seeds
are isomorphic, so we may assume all n/2 new seeds are added to

V ′. □

v

S1 S2 S3

x1 x2 x3

Figure 2: Corresponds with the set cover problem ‘Is there
k = 1 set among S1 = {x1,x2}, S2 = {x2,x3}, S3 = {x3} that
cover all elements?’ Note that since the answer is no, then
the minimum probability is no more than px3 = 1− (1−α2)2.

We note that one could consider many variations of ϕ-means,

including replacing mean with median, maximum with minimum,

etc. These variations do not affect the results that we present here.

We defer a detailed analysis of these variations to the full version

of the paper.

4 MAXIMIN ACCESS
The previous section established µ−∞ as a better access measure

than others, at least when it comes to achieving balance. We now

study the problem of maximizing µ−∞, which we call the maximin
access problem. We start by showing that this is NP-hard even to

approximate well.

Theorem 4.1. Suppose α <
√
5−1
2

. Then choosing k seeds to maxi-
mize min access is NP-hard. In this case, the maximin access cannot be
approximated better than O(α) and if furthermore α = O(1/n) then
the maximum cannot be attained efficiently without an additional
O(lnn) factor seeds.

Proof. We reduce from Set Cover, where an instance is de-

fined by a collection of subsets S1, . . . , Sm over a ground set U =
{x1, . . . ,xn } and an integer k , and the decision problem is whether

or not there is a collection of k subsets whose union is U . Further,

we can assume k < n < m. Given such an instance, we construct a

directed graph (example showed in Figure 2). We start with the nat-

ural directed bipartite graph corresponding to a set cover instance,

where there is a vertex i corresponding with each set Si and a vertex
j corresponding with each element x j . There is a directed edge from
i to j whenever x j is contained in Si . We then add a single extra

vertex v and directed edges from v to each vertex i corresponding
with one of the sets, and ask to maximize the minimum probability

by adding k + 1 seeds.
Since v has in-degree zero, in order for the maximin access to

be greater than zero, v must be chosen as a seed. In this case, since

k < m, regardless of which seeds are chosen, there is some set Si
such that pi = α . Therefore the maximum min access is no more

than α . Without loss of generality, no vertex corresponding to an

element x j need be chosen as a seed. Otherwise, the seed may be

moved to any vertex corresponding with a set Si such that x j ∈ Si .
The maximin access cannot go down, because we still have pj ≥ α .

If there is a set cover, then the maximum min access is at least α :
choose the vertices corresponding to the cover for the seeds (plus

v), in which case pv = 1, pi ≥ α because they are either seeds or

distance one fromv , andpj ≥ α , because they are distance one from
a seed. If there is no set cover, then there is no way to choose the



seeds amongst the Si such that all vertices are within distance one

from a seed. Assume that every element x j is contained in at most

two subsets amongst the Si (this is now the Vertex Cover problem,

an NP-hard special case of Set Cover). So there must be some pj
such that pj ≤ 1 − (1 − α2)2. Thus when α > 1 − (1 − α2)2, i.e. α <√
5−1
2

, any algorithm that maximizes the min access chooses the set

cover if there is one. So any algorithm that has an approximation

ratio strictly better than
1−(1−α 2)2

α = O(α) must in fact be exact,

and therefore also find the set cover.

Even in the general case of Set Cover, we can still distinguish

between when there is and is not a set cover: The existence of a set

cover still means the maximin probability is at least α , while the lack
of a set cover implies there is at least one vertex with probability

no more than 1 − (1 − α2)m , which is upper-bounded by α when

α = 1/m. Therefore, since set cover is O(lnn)-inapproximable, we

cannot approximate the best k seeds to add without an additional

O(lnn)-factor seeds. □

Moreover, if we can find the seeds that maximize the minimum

probability, even approximately, we can boost this result to also

compute the minimum probability itself approximately. This serves

as additional evidence that this problem is hard, as there is no known

method to even approximately compute the minimum probability.

Proposition 4.2. If there is an α f (n)-approximation algorithm for
maximin access, there is an α2f (n)+2-approximation for the minimum
access of a vertex in a graphG given a seed s . That is, if the minimum
access is pmin in G, then we can given an estimate p̂ such that

α2f (n)+2pmin ≤ p̂ ≤ (1/α)2f (n)+2pmin.

Proof. Given an instance (G, s,α), we construct a graphG ′ sim-

ilar to the one in Figure 5. (We may assume that G is connected.) If

the diameter of G is ℓ, add to G a simple undirected path of length

ℓ starting from s , and call it G ′. Call the end of this path v . In G,

pmin ≥ α ℓ
, which means that if we compute the single optimal seed

in G ′, it must be on the path from s to v .

Define x so that α ℓ−x = αx · pmin, i.e. x = ℓ/2 −
log(1/pmin)
2 log(1/α ) .

Then the optimal placement for a seed is at distance k from s ,

where ⌊x⌋ ≤ k ≤ ⌈x⌉, because for any k we have p′v = α ℓ−k
and

p′
min
= αk · pmin, where p

′
denotes probabilities in G ′.

Suppose that we have a (1/α)f (n)-approximation algorithm for

maximin access, and it chooses some seed distance k ′ from s (we
may assume that the seed is on the simple path, otherwise we may

always choose k ′ = 0). Since it is a (1/α)f (n)-approximation on a

simple path, k ′ must be within f (n) of k . Now we can approximate

pmin using k ′ as an estimate of k : We estimate it as p̂ = α ℓ−2k ′
.

Then α ℓ−2k ′ ≤ α ℓ−2(k+f (n) ≤ α ℓ−2(x+1+f (n))
, and likewise

α ℓ−2k ′ ≥ α ℓ−2(x−1−f (n))
, so this is within α2f (n)+2 of pmin =

α ℓ−2x
.

□

4.1 Maximin algorithms
The above results imply that it is hard tomaximize µ−∞ even approx-

imately. Nonetheless, Theorem 4.1 still leaves open the possibility

of an αc -approximation (for fixed number of seeds and c > 1). In

this section, we present the heuristics we will use, along with a few

baselines. We will show in Section 4.2 that, unfortunately, these

natural heuristics have a worst-possible approximation ratio (a ratio

exponential in n). These results do not preclude good performance

in practice, which we discuss in Section 5.

Making our task yet more challenging is that, unlike maximizing

reach [21], maximin is not a submodular objective.
2
Nonetheless, it

is natural to try a greedy approach, where in each iteration, we add

to the seeds the vertex that maximizes the objective function. We

refer to this heuristic as Greedy (Algorithm 1). To do this, we use

the simple approach of estimating each probability pv for every

possible vertex to add to the seed set. (See below for details on how

we estimate these probabilities.) We contrast this approach to the

Algorithm 1 Greedy

Input: Graph G, initial seed set S , number of seeds to add k
1: for k iterations do
2: for all j < S do
3: prob ← ProbEst(G, S ∪ {j}) ▷ Algorithm 4

4: nextMin[j] ← mini prob[i] ▷ The minimum

probability when the seeds are S ∪ {j}
5: v ← argminj nextMin[j]
6: add v to S
7: return S

faster approach, which we will callMyopic (Algorithm 2), whereby

we instead in each round choose the vertex with the currently

smallest probability as the new seed, without actually evaluating

the new value of the objective function.

Algorithm 2 Myopic

Input: Graph G, initial seed set S , number of seeds to add k
1: k ′ ← k
2: if |S | = 0 then
3: Initialize S as the vertex with the highest degree

4: k ′ ← k − 1
5: for k ′ iterations do
6: prob ← ProbEst(G, S) ▷ Algorithm 4

7: v ← argmini prob[i] ▷ pick node with min probability

8: add v to S
9: return S

We also consider a naïve variation (Naïve Myopic, Algorithm 3)

which, instead of proceeding in rounds, given initial estimates for

the probabilities, picks for the seeds the k vertices with the smallest

probabilities.

So far, we have omitted how to estimate the probabilities for

each vertex. Unfortunately, computing the probability pv for each

vertex exactly is #P-hard [29]. Even computing probabilities of

receiving the information with a guaranteed approximation ratio

is a long-standing open problem [20]. So in this paper, we use

a Monte Carlo method, simulating the IC model a fixed number

of times, and estimating the probabilities for each vertex as the

2
This can be seen using the construction in the proof of Proposition 4.4, starting with

one seed in the center of a simple path. Adding one additional seed then does nothing,

but adding two seeds increases the minimum probability.



Algorithm 3 Naïve Myopic

Input: Graph G, initial seed set S , number of seeds to add k
1: k ′ ← k
2: if |S | = 0 then
3: Initialize S as the vertex with the highest degree

4: k ′ ← k − 1
5: prob ← ProbEst(G, S) ▷ Algorithm 4

6: Add to S the k ′ vertices i < S with smallest probability prob[i]
7: return S

percent of times the information reached that vertex under the

simulations (Algorithm 4). Of course, this requires having at least

one seed, which is not the case in the first round of Myopic and

Naïve Myopic. So we always choose the first seed as vertex with

the highest degree. This approach for dealing with the first round,

as well as estimating the probabilities, provides a simple way to

compare these heuristics. As such, for the experiments we also

choose the first seed as the highest degree vertex for the Greedy

heuristic as well, again to simplify comparison. We leave for future

work other approaches for these issues.

Algorithm 4 ProbEst (Monte Carlo probability estimation)

Input: Graph G, seed set S
Parameters: α , Number of simulation rounds R
1: Initialize hits[i] ← 0 for each i a vertex of G
2: for R iterations do ▷ Simulate the IC model R times

3: for all i ∈ S do
4: hits[i]++ ▷ hits[i] is the number of times i has

received the information

5: activeQueue ← S ▷ Keep track of which vertices are

currently active

6: while activeQueue non-empty do
7: Dequeue i from activeQueue
8: for all neighbors j of i do
9: transmit ← True with probability α , else False
10: if j has not been in activeQueue and transmit then
11: hits[j]++
12: Enqueue j to activeQueue

13: prob[i] ← hits[i]/R
14: return prob

An alternative approach that avoids estimating probabilities is

to pick seeds that are far from each other, under the intuition that

a node far away from the current seeds is likely to have a small

pi and therefore should be picked as the next seed. The resulting

heuristic is to pick in each round the node that is furthest from

the current set of seeds as the next seed; we call this heuristic

Gonzalez because of its resemblance to the well-known algorithm

for k-center clustering [13].
One could choose other proxies for the utility pv such as nodes

of low degree (or high degree), or nodes that do not contain seeds

in a fixed radius ball around them. In our experiments with these

heuristics, they were dominated in both quality and performance

by the ones mentioned above, and we will not discuss them further.

s t

v1

v2

ℓ

· · ·

Figure 3: G

4.2 Approximation ratios of maximin
algorithms

We now show that Myopic, Naïve Myopic, Greedy, and an exact ver-

sion of Gonzalez all have approximation ratios that are exponential

in n, even if we assume the probabilities required by Myopic, Naïve

Myopic, and Greedy can be estimated exactly. This is to emphasize

that their poor behavior in the worst case doesn’t just stem from

the difficulty of approximating the probabilities given a seed set,

but the heuristics themselves.

4.2.1 Myopic and Naïve Myopic. Note that in the case k = 1, My-

opic and Naïve Myopic are identical algorithms. Thus we can show

that in this case, both algorithms behave poorly in the worst case,

even in the non-trivial case when we start with at least one initial

seed.

Proposition 4.3. Given a graph and non-zero initial seed set,
choosing as the seed with smallest pv yields a solution with approxi-
mation ratio no better than O(αn ).

Proof. Consider the graph G depicted in Figure 3. If we are

allowed to add only a single additional seed besides the initial

seed set {s}, then this algorithm will choose to add either v1 or v2,

because inG they minimize minv pv , where pv1
= pv2

= α ℓ+1
. But

since we can only reach one of the two, we still have minv pv =

α ℓ+1
. But the optimal vertex to add to the seed set is t , where now

minv pv ≥ α2. Then we get an approximation ratio no better than

O
(
α ℓ+1

α 2

)
= O (αn ). □

4.2.2 Greedy. We now consider what happens if Greedy is used to

choose the k seeds. One problem with Myopic was that, as demon-

strated via Figure 3, choosing the vertex with the smallest probabil-

ity ignores the actual objective function (which in that example is

maximized by choosing vertex t ). What happens when we attempt

to maximize the actual objective function? Again, we assume that

for any seed set we are given the exact probabilities instead of

approximate probabilities, which we refer to as a probability oracle.

Proposition 4.4. Greedy, even with a probability oracle, has an
approximation ratio no better than O(αn/6).

Proof. Consider the simple undirected path of length n, with no
initial seeds, where we may add k = 2 seeds. The greedy algorithm,

in the first iteration, must choose the central vertex (assume n is

even). In the second iteration, no vertex can increase the minimum

probability, so the minimum probability is αn/2. However, the opti-
mal minimum probability is much larger: If the two seeds trisect

the path so that they are n/3 apart, then no vertex is distance more

than n/3 from a seed, in which case the minimum probability is at

least αn/3. □
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Figure 5: H , which consists of a simple path of length ℓ/2,
whose vertex s is the vertex s of in-degree 0 in Hℓ/2, depicted
in Figure 4.

4.2.3 Minimax distance. Gonzalez is a heuristic to minimize the

maximum distance of any vertex from a seed. One motivation

behind this algorithm is that in Figure 3, adding an edge from s to t
inG takes care of the issues found with Myopic by ensuring that all

vertices have distance no more than two from the seed. In general,

minimizing the maximum distance exactly is difficult, but even if

we could do so, this approach still has a bad approximation ratio.

To show this, we construct a (sparse, max degree two) graph

where nonetheless the vertex t furthest away from the seed still

has a relatively high probability of receiving the information. This

is the case for Hℓ , shown in Figure 4, that’s sufficiently sparse but

pt is large.

Lemma 4.5. The probability of t being infected in Hℓ , where each
edge has weight α = 1/2, is pt = Θ(1/ℓ).

Proof. Denote by level k the vertices distance k from s , and by

symmetry, the probability of being infected at that levelpk . Wewant

to calculate pℓ . Note p0 = 1 and pk+1 = 1 − (1 − αpk )2 = pk − 1

4
p2k ,

a variant of the logistic map.

Then
1

pk+1
= 1

1

4
pk (4−pk )

= 1

pk
+ 1

4−pk . Note 1/4 ≤
1

4−pk ≤ 1/3.

Unwinding the recurrence, we get
1

pk+1
= 1

p0 +
∑k
j=0

1

4−pj , and in

particular we have
1

p0 +
k+1
4
≤ 1

pk+1
≤ 1

p0 +
k+1
3
, i.e. 1

pk
= Θ(k). □

Proposition 4.6. The algorithm that minimizes the maximum
distance from a seed has approximation ratio O(

√
n/2n/6) when α =

1/2.

Proof. Suppose we can choose at most one seed in H , shown in

Figure 5. Minimizing the max distance means the seed we use is s ,

and for sufficiently large ℓ the minimum probability is pv = α ℓ/2
,

at least for α = 1/2 (using the previous lemma). However, the

optimal seed to use is x , where x is a vertex k ≤ ℓ/2 distance

from s . Under this seed set, pv remains the vertex with the mini-

mum probability of getting infected so long as, for some constant

c , α ℓ/2−k ≤ 2cαk
ℓ (again using the previous lemma). Solving for k

to maximize the minimum probability, we get k = ℓ/4 −
log

(
ℓ
2c

)
2 log( 1α )

.

Then the approximation ratio is no better than
α ℓ/2+1

α ℓ/2−k+1 = αk =
√
ℓα ℓ/4
√
2c
= O(
√
ℓ(1/2)ℓ/4), and finally noteH has

5

2
ℓ−4 edges, 3

2
ℓ+1

vertices, and the maximum in-degree (and out-degree) is two. □

Despite the hardness results of this section, we will show in the

next section that these algorithms perform well in practice.

5 EXPERIMENTS
Our experimental evaluation will investigate the following ques-

tion: does maximizing µ−∞ create real changes in access? Is this

different from the interventions achieved via maximum reach? And

how effective are the proposed strategies for optimizing µ−∞? Since
our goal in this paper is to introduce and validate a method for

reducing access gaps, we will not focus on achieving the fastest im-

plementations (although we will compare the efficiency of different

heuristics).

5.1 Experimental procedure
For our evaluation, we used social networks sourced from the

SNAP [23] and ICON [6] repositories as described in Table 1.

µ−∞ is a stringent objective function: it minimally requires hav-

ing at least one seed in every connected component to achieve

non-zero minimum probability, which may require a large number

of added seeds if for example there are many disconnected nodes.

Since the access gap is maximally large if there is at least one seed

and a vertex with pv = 0, we assume that the number of added

seeds is large enough to cover all components of the graph. This

allows us to add seeds to each component of the graph separately.

As a simplifying assumption, in the experiments, we only consider

the case (in directed graphs) when the components are strongly con-

nected. In particular, rather than running the heuristics on all of the

components, we just use the largest strongly connected component

of the graph.

We also varied our intervention size between k = 1 and 100,

independent of the size of the graph. This is a typical number of

seeds used for interventions in the literature, and considering the

application – recommending a job position – is a practical interven-

tion size. We varied α – the probability of message transmission

across an edge – in the range {0.1, 0.2, 0.3, 0.4, 0.5}3. Above this
range information spreads so effectively that all algorithms are

indistinguishable. Below this range the utilities pv obtained are

small enough that it is hard for Monte Carlo estimation to distin-

guish between them. We run 1000 simulations in order to estimate

probabilities for any given seed set and repeat each heuristic 20

times, reporting the average result.

As a baseline, we used the algorithm TIM+ [35], which was

designed to optimize maximum reach. While this procedure is not

a true baseline (it does not directly optimize minpi ), it provides
insight into how existing methods for maximum reach might work

in this newer setting. We also use as a baseline picking the k seeds

uniformly at random (which we will refer to as Random).

3
We report results for α ≥ 0.3 for brevity. Behavior below this range was similar.



(a) Initial probabilities (with one seed). (b) Degree of the vertex. (c) Distance from the center.

Figure 6: Correlations between the set of probabilities of access after intervention and three proxies for position in a network
in the Arenas graph. Bars correspond to one standard deviation computed over 20 runs of each of the heuristics.

Name Nodes Edges Direction

EU [22] 803 24729 Directed

Arenas [1, 17] 1133 5451 Directed

Irvine [28] 1294 19026 Directed

Facebook [24] 4039 24729 Undirected

ca-GrQc [22] 4158 13428 Undirected

ca-HepTh [22] 8638 24827 Undirected

Table 1: Overview of the data sets we use.

5.2 Maximin and network structure
In practice, what are the effects of using maximin over max reach

as the objective? We give evidence that when maximizing reach

instead of using maximin, interventions end up strongly reflecting

the existing structure of the network. That is, vertices are more

likely to become seeds if they are close to the center of the network,

where probabilities of receiving the information are already high

and do not need as many additional interventions.

We show this by measuring the correlation between the prob-

ability of receiving information before intervention versus after

intervention. We use as a simple proxy for ‘before intervention’

the probabilities pv when the vertex with the highest degree is the

sole seed. Figure 6a shows the correlation between these two sets

of probabilities in the Arenas graph, and indeed the correlation is

significantly higher when using TIM+ than when using Myopic.

Assuming every vertex is equally deserving of information, we

do not want ‘well-positioned’ vertices to have an advantage simply

because they are well-positioned. Thus, we look at the correlation

between the probability of information access after intervention

and a few other proxies for position in a network. Figures 6b and 6c

show the results for the degrees of the vertices as well as their

distances from the center of the graph. Using TIM+, as the distance

decreases towards the center or the degree of the node increases,

the probabilities of information access increase, leading to a larger

(negative) correlation. Again, this effect is lessened by usingMyopic,

whose resulting probabilities correlate less than TIM+ with both

the degree of the vertex and the distance from the center. In other

words, Myopic reduces the correlation between vertices’ probability

of receiving the information and how well connected the vertices

are. Naïve Myopic yields very similar results to Myopic, as again

seen in Figure 6.

In addition, Myopic changes the distribution of probabilities

{pv1
, . . . ,pv |V | }. Not only does it decrease the number of vertices

with very low probability of receiving the information, but it also

increases the number of vertices with larger probabilities over a

broad range of probabilities, as seen in Figure 7.

Figure 7: Distribution of probabilities over all vertices in the
Arenas graph after adding 100 seeds with α = 0.1.

5.3 Heuristic performance
We now study the behavior of the heuristics described in the previ-

ous section. We would like to know how they compare in terms of

effectiveness (maximizing µ−∞) and speed.

We present effectiveness results in Figure 8. We omitted the

heuristic Greedy when experimenting with larger data sets because

it was prohibitively slow. Note that in both charts, the Myopic and

Naïve Myopic heuristics consistently outperform the other methods

for all ranges of α and intervention size k . The heuristics that do
not use estimation are all consistently poor performers, and TIM+

performs well but is consistently dominated. For the smaller data

sets, shown in Figure 8a, Greedy also does fairly well.

http://snap.stanford.edu/data/email-EuAll.html
http://konect.uni-koblenz.de/networks/arenas-email
https://toreopsahl.com/datasets/
http://snap.stanford.edu/data/ego-Facebook.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-HepTh.html


(a) Smaller data sets. (b) Larger data sets.

Figure 8: Comparison of the six heuristics with respect to the minimum probability for values of α = {0.3, 0.4, 0.5}.

Algorithm Average time (s)

Arenas EU Irvine

Random 0.007 0.015 0.012

Gonzalez 0.021 0.031 0.033

Naïve Myopic 0.086 0.208 0.184

TIM+ 0.876 1.826 1.046

Myopic 8.910 19.438 16.755

Greedy 507.35 759.296 1399.26

Table 2: Speed of each of the heuristics on three data sets for
100 seeds. Times to completion are averaged over 20 runs.

The running time of the heuristics is summarized in Table 2,

which shows there is a natural tradeoff between running time and

effectiveness. In particular, while the methods that make no use

of estimation yield poorer quality results, they run extremely fast

because they avoid the expensive step of estimating probabilities.

Among the heuristics that estimate probabilities, Naïve Myopic is

the fastest, with TIM+ also comparable, while the Myopic heuristic

is an order of magnitude more expensive. Greedy is still another

order of magnitude slower than Myopic, making it prohibitively

expensive to compute in even relatively small graphs.

5.4 Performance on max reach
While the goal of the introduced heuristics is to maximize the mini-

mum information access, it is also valuable to measure them by their

average reach
1

|V |
∑
v ∈V pv to see if they are effective at spreading

information to a large number of vertices. We compare the perfor-

mance of Naïve Myopic and Myopic to TIM+ on this measure over

three datasets (see Figure 9). The results show that while Naïve

Myopic does not perform well to maximize reach, Myopic appears

Figure 9: Comparison of three heuristics with respect to
reach, the average probability after intervention, for α =
{0.3, 0.4, 0.5}.

to outperform TIM+ even though TIM+ was designed for average

reach and Myopic was not. This is likely because each seed added

by Myopic is guaranteed to increase reach on the graphs, while

algorithms that focus on maximizing reach may inadvertently pro-

vide access to nodes already reached. However, recall that Myopic

is much slower than TIM+ (see Table 2) and so this potential im-

provement does not come without pitfalls. This tradeoff between

average and minimum reach seems worthy of further study.



REFERENCES
[1] 2017. U. Rovira i Virgili network dataset – KONECT. http://konect.uni-koblenz.

de/networks/arenas-email

[2] David Arthur, Rajeev Motwani, Aneesh Sharma, and Ying Xu. 2009. Pricing

Strategies for Viral Marketing on Social Networks. In Internet and Network Eco-
nomics, 5th International Workshop, WINE 2009, Rome, Italy, December 14-18, 2009.
Proceedings. 101–112.

[3] Sebastian Benthall and Bruce D. Haynes. 2019. Racial categories in machine learn-

ing. In Proceedings of the Conference on Fairness, Accountability, and Transparency.
ACM, 289–298.

[4] Danah Boyd, Karen Levy, and Alice Marwick. 2014. The networked nature of

algorithmic discrimination. Data and Discrimination: Collected Essays. Open
Technology Institute (2014).

[5] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in

social networks. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009.
199–208.

[6] Aaron Clauset, Ellen Tucker, and Matthias Sainz. 2016. The Colorado Index of

Complex Networks. https://icon.colorado.edu/.

[7] James S Coleman. 1988. Social capital in the creation of human capital. American
journal of sociology 94 (1988), S95–S120.

[8] Gerard Debreu. 1959. Topological methods in cardinal utility theory. Technical
Report. Cowles Foundation for Research in Economics, Yale University.

[9] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness Through Awareness. In Proc. of Innovations in Theoretical
Computer Science.

[10] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and

Suresh Venkatasubramanian. 2015. Certifying and removing disparate impact.

Proc. 21st ACM KDD (2015), 259–268.

[11] Benjamin Fish, Jeremy Kun, and Ádám D Lelkes. 2016. A confidence-based

approach for balancing fairness and accuracy. In Proceedings of the 2016 SIAM
International Conference on Data Mining. SIAM, 144–152.

[12] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael

Mathioudakis. 2017. Reducing Controversy by Connecting Opposing Views. In

Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining, WSDM 2017, Cambridge, United Kingdom, February 6-10, 2017. 81–90.

[13] Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster

distance. Theoretical Computer Science 38 (1985), 293–306.
[14] William M Gorman. 1968. The structure of utility functions. The Review of

Economic Studies 35, 4 (1968), 367–390.
[15] Mark Granovetter. 1983. The strength of weak ties: A network theory revisited.

Sociological theory (1983), 201–233.

[16] Mark S Granovetter. 1977. The strength of weak ties. In Social networks. Elsevier,
347–367.

[17] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas. 2003. Self-similar

Community Structure in a Network of Human Interactions. Phys. Rev. E 68, 6

(2003), 065103.

[18] Moritz Hardt, Eric Price, Nati Srebro, et al. 2016. Equality of opportunity in

supervised learning. In Advances in neural information processing systems. 3315–
3323.

[19] Hoda Heidari, Claudio Ferrari, Krishna P. Gummadi, and Andreas Krause. 2018.

Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision

Making. In Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada. 1273–1283.

[20] David R. Karger. 1999. A Randomized Fully Polynomial Time Approximation

Scheme for the All-Terminal Network Reliability Problem. SIAM J. Comput. 29, 2
(1999), 492–514.

[21] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread

of influence through a social network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 24 - 27, 2003. 137–146.

[22] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

[23] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[24] Jure Leskovec and Julian J Mcauley. 2012. Learning to discover social circles in

ego networks. In Advances in neural information processing systems. 539–547.
[25] Antonis Matakos, Evimaria Terzi, and Panayiotis Tsaparas. 2017. Measuring and

moderating opinion polarization in social networks. Data Min. Knowl. Discov. 31,
5 (2017), 1480–1505.

[26] Cameron Musco, Christopher Musco, and Charalampos E. Tsourakakis. 2018.

Minimizing Polarization and Disagreement in Social Networks. In Proceedings
of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon,
France, April 23-27, 2018. 369–378.

[27] Arvind Narayanan. 2018. 21 fairness definitions and their politics. (Feb. 23

2018). Tutorial presented at the Conference on Fairness, Accountability, and

Transparency.

[28] Tore Opsahl and Pietro Panzarasa. 2009. Clustering in weighted networks. Social
networks 31, 2 (2009), 155–163.

[29] J Scott Provan and Michael O Ball. 1983. The complexity of counting cuts and

of computing the probability that a graph is connected. SIAM J. Comput. 12, 4
(1983), 777–788.

[30] J. Rawls. 2009. A Theory of Justice. Harvard University Press.

[31] Matthew Richardson and Pedro M. Domingos. 2002. Mining knowledge-sharing

sites for viral marketing. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton,
Alberta, Canada. 61–70.

[32] Kevin WS Roberts. 1980. Interpersonal comparability and social choice theory.

The Review of Economic Studies (1980), 421–439.
[33] Andrea Romei and Salvatore Ruggieri. 2013. A Multidisciplinary Survey on

Discrimination Analysis. The Knowledge Engineering Review (April 3 2013), 1–57.

[34] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: near-

optimal time complexity meets practical efficiency. In International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. 75–86.

[35] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence Maximization: Near-

optimal Time Complexity Meets Practical Efficiency. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (SIGMOD ’14).
ACM, New York, NY, USA, 75–86. https://doi.org/10.1145/2588555.2593670

[36] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P

Gummadi. 2017. Fairness Constraints: Mechanisms for Fair Classification. In

Artificial Intelligence and Statistics. 962–970.

http://konect.uni-koblenz.de/networks/arenas-email
http://konect.uni-koblenz.de/networks/arenas-email
https://icon.colorado.edu/
http://snap.stanford.edu/data
https://doi.org/10.1145/2588555.2593670

	Abstract
	1 Introduction
	1.1 Our Work
	1.2 Related Work

	2 Definitions
	3 Gaps in Access
	3.1 k-imbalance

	4 Maximin access
	4.1 Maximin algorithms
	4.2 Approximation ratios of maximin algorithms

	5 Experiments
	5.1 Experimental procedure
	5.2 Maximin and network structure
	5.3 Heuristic performance
	5.4 Performance on max reach

	References

