
Compressing Kinetic Data
From Sensor Networks

Sorelle A. Friedler? and David M. Mount??

Dept. of Computer Science, University of Maryland, College Park, MD 20742, USA
sorelle@cs.umd.edu mount@cs.umd.edu

http://www.cs.umd.edu/~sorelle http://www.cs.umd.edu/~mount

Abstract. We introduce a framework for storing and processing kinetic
data observed by sensor networks. These sensor networks generate vast
quantities of data, which motivates a significant need for data compres-
sion. We are given a set of sensors, each of which continuously monitors
some region of space. We are interested in the kinetic data generated by a
finite set of objects moving through space, as observed by these sensors.
Our model relies purely on sensor observations; it allows points to move
freely and requires no advance notification of motion plans. Sensor out-
puts are represented as random processes, where nearby sensors may be
statistically dependent. We model the local nature of sensor networks by
assuming that two sensor outputs are statistically dependent only if the
two sensors are among the k nearest neighbors of each other. We present
an algorithm for the lossless compression of the data produced by the
network. We show that, under the statistical dependence and locality as-
sumptions of our framework, asymptotically this compression algorithm
encodes the data to within a constant factor of the information-theoretic
lower bound optimum dictated by the joint entropy of the system.

1 Introduction

There is a growing appreciation of the importance of algorithms and data struc-
tures for processing large data sets arising from the use of sensor networks,
particularly for the statistical analysis of objects in motion. Large wireless sen-
sor networks are used in areas such as road-traffic monitoring [1], environment
surveillance [2], and wildlife tracking [3, 4]. With the development of sensors of
lower cost and higher reliability, the prevalence of applications and the need for
efficient processing will increase.

Wireless sensor networks record vast amounts of data. For example, road-
traffic camera systems [1] that videotape congestion produce many hours of video

? The work of Sorelle Friedler has been supported in part by the AT&T Labs Fellow-
ship Program.

?? The work of David Mount has been supported in part by the National Science
Foundation under grant CCR-0635099 and the Office of Naval Research under grant
N00014-08-1-1015

or gigabytes of data for analysis even if the video itself is never stored and is in-
stead represented by its numeric content. In order to analyze trends in the data,
perhaps representing the daily rush hour or weekend change in traffic patterns,
many weeks or months of data from many cities may need to be stored. As the ob-
servation time or number of sensors increases, so does the total data that needs to
be stored in order to perform later queries, which may not be known in advance.

In this paper we consider the problem of compressing the massive quantities
of data that are streamed from large sensor networks. Compression methods can
be broadly categorized as being either lossless (the original data is fully recov-
erable), or lossy (information may be lost through approximation). Since lossy
compression provides much higher compression rates, it is by far the more com-
monly studied approach in sensor networks. Our ultimate interest is in scientific
applications involving the monitoring of the motion of objects in space, where the
loss of any data may be harmful to the subsequent analysis. For this reason, we
focus on the less studied problem of lossless compression of sensor network data.
Virtually all lossless compression techniques that operate on a single stream rely
on the statistical redundancy present in the stream in order to achieve high com-
pression rates [5–7]. In the context of sensor networks, this redundancy arises nat-
urally due to correlations in the outputs of sensors that are spatially close to each
other. As with existing methods for lossy compression [8,9], our approach is based
on aggregating correlated streams and compressing these aggregated streams.

A significant amount of research to date has focused on the efficient collec-
tion and processing of sensor network data within the network itself, for example,
through the minimization of power consumption or communication costs [10–12].
We focus on losslessly compressing the data locally and then downloading it to
traditional computer systems for analysis. Clustering the stationary sensors is a
strategy that has been previously used to improve the scalability as well as the
energy and communication efficiency of the sensor network [13]. Compressing the
data before transmission additionally improves the communication efficiency.

We are particularly interested in kinetic data, by which we mean data arising
from the observation of a discrete set of objects moving in time (as opposed to
continuous phenomena such as temperature). We explore how best to store and
process these assembled data sets for the purposes of efficient retrieval, visual-
ization, and statistical analysis of the information contained within them. We
assume that we do not get to choose the sensor deployment based on object
motion (as done in [14]), but instead use sensors at given locations to observe
the motion of a discrete set of objects over some domain of interest. Thus, it is to
be expected that the entities observed by one sensor will also likely be observed
by nearby sensors, albeit at a slightly different time. Well-designed storage and
processing systems should capitalize on this redundancy to optimize space and
processing times. In this paper we propose a statistical model of kinetic data
as observed by a collection of fixed sensors. We will present a method for the
lossless compression of the resulting data sets and will show that this method is
within a constant factor of the asymptotically optimal bit rate, subject to the
assumptions of our model.

Although we address the problem of compression here, we are more generally
interested in the storage and processing of large data sets arising from sensor
networks [8,15–18]. This will involve the retrieval and statistical analysis of the
information contained within them. Thus, we will discuss compression within
the broader context of a framework for processing large kinetic data sets arising
from a collection of fixed sensors. We feel that this framework may provide a
useful context within which to design and analyze efficient data structures and
algorithms for kinetic sensor data.

The problem of processing kinetic data has been well studied in the field of
computational geometry in a standard computational setting [19–24]. A survey
of practical and theoretical aspects of modeling motion can be found in [25].
Many of these apply in an online context and rely on a priori information about
point motion. The most successful of these frameworks is the kinetic data struc-
tures (KDS) model proposed by Basch, Guibas, and Hershberger [23], which
models objects as points in motion, where the motion is expressed as piecewise
algebraic flight plans. Although KDS has been valuable for developing theoret-
ical analyses of points in motion (see [26] for a survey), it is unsuitable in many
real-world contexts due to these strong assumptions. Similarly, a framework for
sensor placement by Nikoleteas and Spirakis assumes that possible object trajec-
tories are modeled by a set of 3D curves over space and time [14]. Our framework
makes no a priori assumptions about the motion of the objects.

Algorithms that involve the distributed online processing of sensor-network
data have also been studied and successfully applied to the maintenance of a
number of statistics online [10, 11, 27, 28]. Efficiency is typically expressed as a
trade-off between communication complexity and accuracy or by the amount of
communication between a tracker and an observer. The idea of the tracker and
observer is reminiscent of an earlier model for incremental motion by Mount
et al. [29]. Unlike these models, our framework applies in a traditional (non-
distributed) computational setting.

Here is a high-level overview of our framework, which will be described in
greater detail in Section 2. We assume we are given a fixed set of sensors, which
are modeled as points in some metric space. (An approach based on metric
spaces, in contrast to standard Euclidean space, offers greater flexibility in how
distances are defined between objects. This is useful in wireless settings, where
transmission distance may be a function of non-Euclidean considerations, such
as topography and the presence of buildings and other structures.) Each sensor
is associated with a region of space, which it monitors. The moving entities are
modeled as points that move over time. At regular time intervals, each sensor
computes statistical information about the points within its region, which are
streamed as output. For the purposes of this paper, we assume that this infor-
mation is simply an occupancy count of the number of points that lie within the
sensor’s region at the given time instant. In other words, we follow the minimal
assumptions made by Gandhi et al. [30] and do not rely on a sensor’s ability to
accurately record distance, angle, etc.

Again, our objective is to compress this data in a lossless manner by ex-
ploiting statistical dependencies between the sensor streams. There are known
lossless compression algorithms, such as Lempel-Ziv [7], that achieve the optimal
lower bound encoding bit rate (as established by Shannon [31]) asymptotically.
It would be infeasible to apply this observation en masse to the entire joint
system of all the sensor streams. Instead, we would like to partition the streams
into small subsets, and compress each subset independently. In our context, the
problem is bounding the loss of efficiency due to the partitioning process.

In order to overcome this problem we need to impose limits on the degree of
statistical dependence among the sensors. Our approach is based on a locality as-
sumption. Given a parameter k, we say that a sensor system is k-local if each sen-
sor’s output is statistically dependent on only its k-nearest sensors. In Section 3,
we prove that any k-local system that resides in a space of fixed dimension can be
partitioned so that joint compressions involve groups of at most k+1 sensors. We
show that the final compression is within a factor c of the information-theoretic
lower bound, where c is independent of k, and depends only on the dimension of
the space. In Section 4, we give experimental justification for our k-local model.

2 Data Framework

In this section we present a formal model of the essential features of the sensor
networks to which our results will apply. Our main goal is that it realistically
model the data sets arising in typical wireless sensor-networks when observing
kinetic data while also allowing for a clean theoretical analysis. We assume a
fixed set of S sensors operating over a total time period of length T . The sensors
are modeled as points in some metric space. We may think of the space as Rd

for some fixed d, but our results apply in any metric space of bounded doubling
dimension [32]. We model the objects of our system as points moving continu-
ously in this space, and we make no assumptions a priori about the nature of
this motion. Each sensor observes some region surrounding it. Our framework
makes no assumptions about the size, shape, or density of these regions. The
sensor regions need not be disjoint, nor do they need to cover all the moving
points at any given time.

Each sensor continually collects statistical information about the points lying
within its region, and it outputs this information at synchronized time steps. As
mentioned above, we assume throughout that this information is simply an occu-
pancy count of the number of points that lie within the region. (The assumption
of synchronization is mostly for the sake of convenience of notation. As we shall
see, our compression algorithm operates jointly on local groups of a fixed size, and
hence it is required only that the sensors of each group behave synchronously.)

As mentioned in the introduction, our framework is based on an information-
theoretic approach. Let us begin with a few basic definitions (see, e.g., [33]). We
assume that the sensor outputs can be modeled by a stationary, ergodic random
process. Since the streams are synchronized and the cardinality of the moving
point set is finite, we can think of the S sensor streams as a collection of S

strings, each of length T , over a finite alphabet. Letting lg denote the logarithm
base-2, the entropy of a discrete random variable X, denoted H(X), is defined
to be −

∑
x px lg px, where the sum is over the possible values x of X, and px is

the probability of x.
We generalize entropy to random processes as follows. Given a stationary, er-

godic random process X, consider the limit of the entropy of arbitrarily long se-
quences of X, normalized by the sequence length. This leads to the notion of nor-
malized entropy, which is defined to be H(X) = limT→∞− 1

T

∑
x,|x|=T px lg px,

where the sum is over sequences x of length T , and px denotes the probability of
this sequence. Normalized entropy considers not only the distribution of individ-
ual characters, but the tendencies for certain patterns of characters to repeat.

We also generalize the entropy to collections of random variables. Given a
sequence X = 〈X1, X2, . . . , XS〉 of (possibly statistically correlated) random
variables, the joint entropy is defined to be H(X) = −

∑
x px lg px, where the

sum is taken over all S-tuples x = 〈x1, x2, . . . , xS〉 of possible values, and px is
the probability of this joint outcome [33]. The generalization to normalized joint
entropy is straightforward and further strengthens normalized entropy by con-
sidering correlations and statistical dependencies between the various streams.

In this paper we are interested in the lossless compression of the joint sensor
stream. Shannon’s source coding theorem states that in the limit, as the length
of a stream of independent, identically distributed (i.i.d.) random variables goes
to infinity, the minimum number of required bits to allow lossless compression
of each character of the stream is equal to the entropy of the stream [31]. In our
case, Shannon’s theorem implies that the optimum bit rate of a lossless encod-
ing of the joint sensor system cannot be less than the normalized joint entropy
of the system. Thus, the normalized joint entropy is the gold standard for the
asymptotic efficiency of any compression method. Henceforth, all references to
“joint entropy” and “entropy” should be understood to mean the normalized
versions of each.

As mentioned above, joint compression of all the sensor streams is not feasi-
ble. Our approach will be to assume a limit on statistical dependencies among
the observed sensor outputs based on geometric locality. It is reasonable to ex-
pect that the outputs of nearby sensors will exhibit a higher degree of statistical
dependence with each other than more distant ones. Although statistical depen-
dence would be expected to decrease gradually with increasing distance, in order
to keep our model as simple and clean as possible, we will assume that beyond
some threshold, the statistical dependence between sensors is so small that it
may be treated as zero. There are a number of natural ways to define such a
threshold distance. One is an absolute approach, which is given a threshold dis-
tance parameter r, and in which it is assumed that any two sensors that lie at
distance greater than r from each other have statistically independent output
streams. The second is a relative approach in which an integer k is provided, and
it is assumed that two sensor output streams are statistically dependent only if
each is among the k nearest sensors of the other. In this paper we will take the
latter approach, which we will justify after introducing some definitions.

Formally, let P = {p1, p2, . . . , pS} denote the sensor positions. Given some
integer parameter k, we assume that each sensor’s output can be statistically
dependent on only its k nearest sensors. Since statistical dependence is a sym-
metric relation, two sensors can exhibit dependence only if each is among the
k nearest neighbors of the other. More precisely, let NN k(i) denote the set of
k closest sensors to pi (not including sensor i itself). We say that two sensors
i and j are mutually k-close if pi ∈ NN k(j) and pj ∈ NN k(i). A system of
sensors is said to be k-local if for any two sensors that are not mutually k-close,
their observations are statistically independent. (Thus, 0-locality means that the
sensor observations are mutually independent.) Let X = 〈X1, X2, . . . , XS〉 be a
system of random streams associated with by S sensors, and let H(X) denote
its joint entropy. Given two random processes X and Y , define the conditional
entropy of X given Y to be H(X | Y) = −

∑
x∈X,y∈Y p(x, y) log p(y | x).

Note that H(X | Y) ≤ H(X), and if X and Y are statistically independent,
then H(X | Y) = H(X). By the chain rule for conditional entropy [33], we
have H(X) = H(X1) + H(X2 | X1) + . . . + H(XS | X1, . . . , XS−1). Letting
Di(k) = {j : 1 ≤ j < i and xi and xj are mutually k-close} we define the k-
local entropy, denoted Hk(X), to be

∑S
i=1H(Xi | Di(k)). Note that H(X) ≤

Hk(X) and equality holds when k = S. By definition of k-locality, H(Xi |
X1, X2, . . . , Xi−1) = H(Xi | Dk(i)). By applying the chain rule for joint entropy,
we have the following easy consequence, which states that, under our locality
assumption, k-local entropy is the same as the joint entropy of the entire system.

Lemma 1. Given a k-local system with set of observations X, H(X) = Hk(X).

We show in the full version of this paper that if KDS is used to observe a
system in which the sensor regions are modeled as a sparse collection of unit
disks and objects change their trajectories relatively frequently, KDS requires
on the order of Hk(X) bits of storage [34]. Thus, since KDS has full knowledge
of the system, Hk(X) is a reasonable measure of optimality.

One advantage of our relative characterization of mutually dependent sen-
sor outputs is that it naturally adapts to the distribution of sensors. It is not
dependent on messy metric quantities, such as the absolute distances between
sensors or the degree of overlap between sensed regions. Another reason arises
by observing that, in an absolute model, all the sensors might lie within dis-
tance r of each other. This would imply that all the sensors could be mutually
statistically dependent on each other, which would render optimal compression
based on joint entropy intractable. Nonetheless, by imposing a relatively weak
density assumption, our model can be applied in such contexts. For example,
consider a setting in which each sensor monitors a region of radius r. Given two
positive parameters α and β, suppose that we were to assume that the number of
sensors whose centers lie within any ball of radius r is at most α, and (instead of
our k-local assumption) we were to assume that the outputs of any two sensors
can be statistically dependent only if they are within distance βr of each other.
Then, by a simple packing argument, it follows that such a system is k-local for
k = O(αβO(1)) in any space of constant doubling dimension. Thus, our model
would be applicable in this context.

3 Compression Results

Before presenting the main result of this section, we present a lemma which is
combinatorially interesting in its own right. This partitioning lemma combined
with a compression algorithm allows us to compress the motion of points as
recorded by sensors to an encoding size which is c times the optimal, where c is
an integral constant to be specified in the proof of Lemma 2.

3.1 Partitioning Lemma
partition(point set P , k)

for all p ∈ P
determine NN k(p) and rk(p)

i = 1
while P 6= ∅

unmarked(P) = P
Pi = ∅
while unmarked(P) 6= ∅

r = minp∈unmarked(P) rk(p)
p′ = p ∈ P : r = rk(p)
Pi = Pi ∪ {p ∈ P : ‖pp′‖ ≤ r}
P = P \ {p ∈ P : ‖pp′‖ ≤ r}
unmarked(P) = unmarked(P) \
{p ∈ unmarked(P) : ‖pp′‖ ≤ 3r}

increment i
return {P1, P2, . . . , Pc}

Fig. 1. The partitioning algorithm that imple-
ments Lemma 2.

First, we present some definitions
about properties of the static point
set representing sensor locations.
Let rk(p) be the distance from
some sensor at location p to its
kth nearest neighbor. Recall that
points are mutually k-close if they
are in each other’s k nearest neigh-
bors. We say that a point set P ∈
Rd is k-clusterable if it can be par-
titioned into subsets Ci1, Ci2, . . .
such that |Cij | ≤ k+1 and if p and
q are mutually k-close then p and
q are in the same subset of the par-
tition. Intuitively, this means that
naturally defined clusters in the
set are separated enough so that
points within the same cluster are closer to each other than they are to points
outside of the cluster. The following lemma holds for all metrics with constant
doubling dimension, where these metrics are defined to limit to a constant the
number of balls that cover a ball with twice their radius [32]. Euclidean spaces
are of constant doubling dimension.

Lemma 2. In any doubling space there exists an integral constant c such that
for all integral k > 0 given any set P in the doubling space, P can be partitioned
into P1, P2, . . . , Pc such that for 1 ≤ i ≤ c, Pi is k-clusterable.

The partitioning algorithm that implements Lemma 2 is shown in Figure 1.
It proceeds by iteratively finding the unmarked point p with minimum r = rk(p),
moving all points within r, henceforth called a cluster, to the current partition,
and marking all points within 3r of p. A new partition is created whenever all
remaining points have been marked. The marked points are used to create a
buffer zone which separates clusters so that all points are closer to points within
their cluster than they are to any other points in the partition. The algorithm’s
inner loop creates these clusters, and the outer loop creates the c partitions.

Proof (Sketch). (See the full version of this paper for a detailed proof [34].)
By the construction of the marking process, each partition is k-clusterable.

We will show that at most c partitions Pi are created by the partitioning algo-
rithm of Figure 1. We refer to each iteration of the outer while loop as a round.
First note that at the end of the first round all points are either marked or
removed from P . Each point that remains after the first round was marked by
some point during the first round. By a packing argument based on the minimum
nearest neighbor radius and the radius of the marked region around a point we
show that points can be marked by at most c = O(1 + 12O(1)) = O(1) rounds,
creating c partitions.

Note that a cluster centered at p′ with less than k+1 points does not violate
the k-clusterable property since this cluster would have been created by cluster-
ing NN k(p′) together as originally identified before any points were partitioned.
Such a cluster is formed because some of the original points in NN k(p′) were
previously added to a different partition. Since being mutual k-close is based on
the entire set, smaller clusters are still mutually k-close within that partition.

3.2 Compression Theorem
compress (stream set X, sensor set P , k)

{P1, P2, . . . , Pc} = partition (P, k)
for i = 1 to c

for all clusters j in Pi

containing streams Xij1 through Xijhij

X̂ij =
⋃T

t=1Xij1t&Xij2t& . . .&Xijhijt

where Xijht is the tth character of Xijh

return
⋃

ij entropy compress(X̂ij)

Fig. 2. The compression algorithm, which takes a
set X of streams of length T and the associated
set P of sensors which recorded them and returns
a compressed encoding of length c · H(X). The
partitioning algorithm of Figure 1 is called and
determines the constant c. entropy compress is an
entropy-based compression algorithm that returns
an encoded stream.

We now present the main
compression algorithm and
analysis. The algorithm,
presented in Figure 2, com-
presses each cluster formed
by the partitioning algo-
rithm (Figure 1) separately
and returns the union of
these. Each cluster is com-
pressed by creating a new
stream in which the tth

character is a new character
which is the concatenation
of the tth character of every
stream in that cluster. This
new stream is then com-
pressed using an entropy-
based compression algorithm which achieves the optimal encoding length in the
limit. For example, the Lempel-Ziv sliding-window compression algorithm could
be used [7]. We reason about the size of the resulting stream set encoding.

First, we introduce some notation. Let X be the set of streams containing
the information recorded by the sensors of set P where |X| = |P |. Given the set
of partitions {Pi} resulting from the partitioning lemma in Section 3.1, {Xi} is
the set of associated streams. Let {Cij} be the set of clusters that are created by
the partitioning algorithm, we call {Xij} the set of streams in cluster Cij and
Xijh is the hth stream in cluster Cij with cardinality hij .

Theorem 1. A stream set which represents observations from a k-local sensor
system can be compressed to an encoded string which has length at most c times
the optimal, where c is a constant depending on the doubling dimension of the
underlying point set.

Proof. First, we show that each cluster Cij is compressed to a string whose
length is equal to the joint entropy of the component streams of that cluster.
Each cluster consists of streams {Xij} which are merged into one new stream
by concatenating the tth character of all the streams to create the tth char-
acter of the new stream. This new stream, X̂ij , is then compressed using an
optimal compression algorithm. By construction of the streams X̂ij , the en-
tropy H(X̂ij) of a single stream is equal to the joint entropy of its component
streams H(Xij1, Xij2, . . . , Xijhij

). The entropy-based encoding algorithm com-
presses each X̂ij to an encoded string the length of the stream’s entropy and that
compression is optimal [35], so H(Xij1, Xij2, . . . , Xijhij) is the optimal encoding
length for cluster Cij .

Our local dependence assumptions, explained in Section 2, say that the
stream of data from a sensor is only dependent on the streams of its k near-
est neighbors. Additionally, recall that in Section 2 we defined being mutually
k-close to require that streams are only dependent if they come from sensors
who are in each other’s k nearest neighbor sets. By the partitioning lemma from
Section 3.1, we know that each cluster Cij is independent of all other clusters in
partition Pi. From standard information theoretic results [33] we know that for
a collection of streams Y1, . . . , YS , H(Y1, Y2, . . . , YS) =

∑S
i=1H(Yi) if and only

if the Yi are independent. Since the elements of {{Xi1}, {Xi2}, . . . , {Xi|{Cij}|}}
are independent, H(Xi) =

∑
j H({Xij}). Combining this with the fact that

H(X̂ij) is equal to the joint entropy of its component streams, we have that
H(Xi) =

∑
j H(X̂ij). H(Xi) is the optimal compression bound for partition Pi,

so we achieve the optimal compression for each partition.
Finally, we show that our compression algorithm is a c-approximation of the

optimal. We say that a compression algorithm provides a γ-approximation if the
length of the compressed streams is no more than γ times the optimal length.
Recall that c partitions are generated by the partitioning algorithm from Sec-
tion 3.1. Each of these partitions is encoded by a string of length H(Xi) in the
limit, so the total encoding size is

∑c
i=1H(Xi) ≤ c · maxiH(Xi) ≤ c · H(X),

where H(X) is the joint entropy, which is a lower bound on the optimal encoding
size, and the last inequality follows since |X| ≥ |Xi| for all i. So our algorithm
provides a c-approximation of the optimal compression.

Note that using the same method we used to compress the members of in-
dividual clusters, we could have combined the characters of all streams and
compressed these together. This method would have optimal compression to the
joint entropy of the streams. For demonstration of the problem with this method,
consider the Lempel-Ziv sliding-window algorithm [7]. The algorithm proceeds
by looking for matches between the current time position and some previous time

within a given window into the past. The length and position of these matches
are then recorded, which saves the space of encoding each character. The window
moves forward as time progresses. Larger window sizes yield better results since
matches are more likely to be found. The optimal encoded length is achieved
by taking the limit as the window size tends to infinity [35]. If all streams are
compressed at once, the optimal compression rate is only achieved in the limit as
the window size becomes large and in practice compressing all streams at once
requires a much larger window before the compression benefits begin. By only
compressing k streams together we limit the effect of this problem.

4 Locality Results Joint entropy values

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

374

391

319

270

Fig. 3. Plotted joint entropy values for values
of k. These are shown for k = 1 to k = 5
at increments of 1 and k = 10 to k = 50 at
increments of 10.

In order to justify our claim that
sensor outputs exhibit higher
statistical dependence on their
nearest neighbors, we analyze
experimental data recorded by
sensors operating under as-
sumptions similar to our frame-
work. The data we analyze was
collected at the Mitsubishi Elec-
tric Research Laboratory [36].
It consists of sensor activation
times for over 200 sensors ob-
serving the hallways of a build-
ing. Each sensor records times
of nearby motion in coordinated
universal time. For our analysis,
we group activations into time
steps consisting of the count of
all activations for a single sen-
sor over 0.1 second. These serve
as the sensor counts over which we find the normalized joint entropy of data
for sensor pairs, and we consider these counts only in terms of the presence or
absence of motion during a given time step. We consider one minute of this data,
or 600 data points.

Recall that the normalized joint entropy of two sequences generated by a
common process is defined in Section 2. For our experiment, we consider the
value T = 3. Probabilities are determined based on the observed outputs of
the two sensors whose pairwise joint entropy is being calculated over the sensor
streams containing 600 activation status values. The results shown in Figure 3
plot the combinatorial neighbor distances for four sensors against the normal-
ized joint entropy values found. These neighbor distances are calculated based
on the sensor locations and do not take walls into account, so some seemingly
close sensors turn out not to be statistically dependent on each other. While

each sensor’s plot starts at a different initial value, there are few low entropy
values (relative to the start value) after k = 10, showing that as sensors become
farther apart they are less likely to be statistically dependent on each other.

In order to justify our claim on the value of compressing sensor outputs, and
further, jointly compressing neighboring sensor outputs, we consider eight sen-
sor outputs from a single hallway. The activation status was considered for these
sensors for 70,000 0.1 second intervals (or approximately 2 hours). The raw data
used 286.7 MB. These eight streams compressed separately with gzip (which
uses the sliding-window Lempel-Ziv algorithm) used a total of 15.5 MB or 5.4%
of the original space. Compressing the eight streams merged together character
by character (as described in the compression algorithm in Figure 2), used 7.1
MB, or an additional 45.7% of the separately compressed space.

References

1. Saunier, N., Sayed, T.: Automated analysis of road safety with video data. In:
Transportation Research Record. (2007) 57–64

2. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: ACM international workshop on wireless
sensor networks and applications. (2002) 88–97

3. MIT Media Lab: The owl project. http://owlproject.media.mit.edu/

4. Stutchbury, B.J.M., Tarof, S.A., Done, T., Gow, E., Kramer, P.M., Tautin, J.,
Fox, J.W., Afanasyev, V.: Tracking long-distance songbird migration by using
geolocators. Science (February 2009) 896

5. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. of the IRE 40 (Sept. 1952)

6. Rissanen, J.: Generalized Kraft inequality and arithmetic coding. IBM Jour. of
Research and Dev. 20 (1976)

7. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3) (May 1977)

8. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Processing approximate aggre-
gate queries in wireless sensor networks. Inf. Syst. 31(8) (2006) 770–792

9. Gandhi, S., Nath, S., Suri, S., Liu, J.: Gamps: Compressing multi sensor data by
grouping and amplitude scaling. In: ACM SIGMOD. (2009)

10. Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide: Continuous
clustering of distributed data streams. In: IEEE 23rd International Conference on
Data Engineering. (2007) 1036–1045

11. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. In: SODA. (2008) 1076–1085

12. Soroush, E., Wu, K., Pei, J.: Fast and quality-guaranteed data streaming in
resource-constrained sensor networks. In: ACM Symp. on Mobile ad hoc net-
working and computing. (2008) 391–400

13. Johnen, C., Nguyen, L.H.: Self-stabilizing weight-based clustering algorithm for
ad hoc sensor networks. Workshop on Algorithmic Aspects of Wireless Sensor
Networks (AlgoSensors) (2006) 83–94

14. Nikoletseas, S., Spirakis, P.G.: Efficient sensor network design for continuous mon-
itoring of moving objects. Theoretical Computer Science 402(1) (2008) 56–66

15. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Dissemination of compressed
historical information in sensor networks. VLDB Journal 16(4) (2007) 439–461

16. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained
devices in delay tolerant networks. In: SENSYS. (November 2006)

17. Guibas, L.J.: Sensing, tracking and reasoning with relations. IEEE Signal Pro-
cessing Mag. 19(2) (Mar 2002)

18. Guitton, A., Trigoni, N., Helmer, S.: Fault-tolerant compression algorithms for
sensor networks with unreliable links. Technical Report BBKCS-08-01, Birkbeck,
University of London (2008)

19. Gupta, P., Janardan, R., Smid, M.: Fast algorithms for collision and proximity
problems involving moving geometric objects. In: Comput. Geom. Theory Appl.
Volume 6. (1996) 371–391

20. Atallah, M.J.: Some dynamic computational geometry poblems. In: Comput.
Math. Appl. Volume 11(12). (1985) 1171–1181

21. Schomer, E., Theil, C.: Efficient collision detection for moving polyhedra. In: Proc.
11th Annu. ACM Sympos. Comput. Geom. (1995) 51–60

22. Schomer, E., Theil, C.: Subquadratic algorithms for the general collision detection
problem. In: European Workshop Comput. Geom. (1996) 95–101

23. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In:
SODA. (1997)

24. Kahan, S.: A model for data in motion. In: STOC ’91: Proc. of the 23rd ACM
Symp. on Theory of Computing. (1991) 265–277

25. Agarwal, P.K., Guibas, L.J., Edelsbrunner, H., Erickson, J., Isard, M., Har-Peled,
S., Hershberger, J., Jensen, C., Kavraki, L., Koehl, P., Lin, M., Manocha, D.,
Metaxas, D., Mirtich, B., Mount, D.M., Muthukrishnan, S., Pai, D., Sacks, E.,
Snoeyink, J., Suri, S., Wolefson, O.: Algorithmic issues in modeling motion. ACM
Computing Surveys 34 (December 2002) 550–572

26. Guibas, L.: Kinetic data structures. In Mehta, D., Sahni, S., eds.: Handbook of
Data Structures and App. Chapman and Hall/CRC (2004) 23–1–23–18

27. Babcock, B., Olston, C.: Distributed top-k monitoring. In: SIGMOD. (2003) 28–39
28. Yi, K., Zhang, Q.: Multi-dimensional online tracking. In: SODA. (2009)
29. Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.: A compu-

tational framework for incremental motion. In: Proc. 20th Annu. ACM Sympos.
Comput. Geom. (2004) 200–209

30. Gandhi, S., Kumar, R., Suri, S.: Target counting under minimal sensing: Com-
plexity and approximations. Workshop on Algorithmic Aspects of Wireless Sensor
Networks (AlgoSensors) (2008) 30–42

31. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-
nical Journal 27 (July, October 1948) 379–423, 623–656

32. Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity
search. In: SODA. (2004)

33. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Second edn. Wiley-
IEEE (2006)

34. Friedler, S.A., Mount, D.M.: Compressing kinetic data from sensor networks. Tech-
nical Report CS-TR-4941, UMIACS-TR-2009-10, University of Maryland, College
Park (2009)

35. Wyner, A.D., Ziv, J.: The sliding-window lempel-ziv algorithm is asymptotically
optimal. In: Proceedings of the IEEE. (Jun 1994) 872–877

36. Wren, C.R., Ivanov, Y.A., Leigh, D., Westbues, J.: The MERL motion detec-
tor dataset: 2007 workshop on massive datasets. Technical Report TR2007-069,
Mitsubishi Electric Research Laboratories, Cambridge, MA, USA (August 2007)

