
ABSTRACT

Title of dissertation: GEOMETRIC ALGORITHMS FOR
OBJECTS IN MOTION

Sorelle Alaina Friedler,
Doctor of Philosophy, 2010

Dissertation directed by: Professor David M. Mount
Department of Computer Science

In this thesis, the theoretical analysis of real-world motivated problems regard-

ing objects in motion is considered. Specifically, four major results are presented

addressing the issues of robustness, data collection and compression, realistic theo-

retical analyses of this compression, and data retrieval.

Robust statistics is the study of statistical estimators that are robust to data

outliers. The combination of robust statistics and data structures for moving objects

has not previously been studied. In studying this intersection, we consider a problem

in the context of an established kinetic data structures framework (called KDS) that

relies on advance point motion information and calculates properties continuously.

Using the KDS model, we present an approximation algorithm for the kinetic robust

k-center problem, a clustering problem that requires k clusters but allows some

outlying points to remain unclustered.

For many practical problems that inspired the exploration into robustness,

the KDS model is inapplicable due to the point motion restrictions and the advance

flight plans required. We present a new framework for kinetic data that allows cal-

culations on moving points via sensor-recorded observations. This new framework

is one of the first within the computational geometry community to allow analysis

of moving points without a priori knowledge of point motion. Analysis within this

framework is based on the entropy of the point set’s motion, so efficiency bounds

are a function of observed complexity instead of worst-case motion. Analysis is

also considered under the more realistic assumptions of empirical entropy and as-

sumptions of limited statistical independence. A compression algorithm within this

framework is presented in order to address the storage issues created by the massive

data sets sensors collect. Additionally, we show experimentally that this framework

and accompanying compression scheme work well in practice. In order to allow

for retrieval of the collected and compressed data, we present a spatio-temporal

range searching structure that operates without the need to decompress the data.

In sum, the collection scheme, compression algorithm, theoretical analyses, and re-

trieval data structures provide a practical, yet theoretically sound, framework within

which observations and analyses can be made of objects in motion.

GEOMETRIC ALGORITHMS FOR OBJECTS IN MOTION

by

Sorelle Alaina Friedler

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor William Gasarch
Professor Samir Khuller
Professor David Mount, Chair/Advisor
Professor Steven Selden
Professor Amitabh Varshney

c© Copyright by
Sorelle Alaina Friedler

2010

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Contributions . 3

2 Literature Review 10
2.1 Data Structures for Moving Points 10
2.2 Kinetic Data Structures Model . 15
2.3 Sensors and Streams . 19
2.4 Data Compression and Entropy . 25

2.4.1 Empirical Entropy . 27
2.5 Compressed Text Indexing . 30
2.6 Approximate Range Searching . 32

3 Approximation Algorithm for the Kinetic Robust K-Center Problem 36
3.1 Introduction . 37

3.1.1 Contributions . 42
3.2 Weak Hierarchical Spanner . 44
3.3 Robust K-Center Algorithm . 47

3.3.1 Intuitive Explanation . 47
3.3.2 Preconditions . 51
3.3.3 The Discrete Problem . 53

3.3.3.1 Tightness of the Approximation Ratio 66
3.3.4 The Absolute Problem . 68

3.4 Kinetic Spanner Maintenance and Quality 69
3.4.1 Certificates . 69
3.4.2 Preconditions . 71
3.4.3 Quality . 72

3.4.3.1 Compactness and Locality 73
3.4.3.2 Efficiency . 73
3.4.3.3 Responsiveness . 74

3.5 Non-Robust Kinetic K-Center Algorithm 75

4 A Sensor-Based Framework For Kinetic Data Compression 78
4.1 Introduction . 79
4.2 Data Framework . 86
4.3 Compression Results . 92

4.3.1 Partitioning Lemma . 92
4.3.2 Compression Theorem . 96

ii

4.4 Efficiency with Respect to Short-Haul KDS 100

5 Realistic Issues in Compression of Kinetic Sensor Data 106
5.1 Introduction . 107
5.2 Statistical Setting . 110
5.3 Empirical Setting . 111
5.4 Limited Independence . 115
5.5 Compression Space Bounds . 119

5.5.1 Statistical Setting . 119
5.5.2 Empirical Setting . 122

5.6 Experimental Results . 128

6 Spatio-temporal Range Searching Over Compressed Kinetic Sensor Data 131
6.1 Introduction . 132

6.1.1 Contributions . 135
6.2 Temporal Range Searching . 136

6.2.1 Group Setting . 137
6.2.2 Semigroup Setting . 144

6.3 Spatio-temporal Range Searching . 147
6.4 Experimental Results . 160

7 Conclusion 164
7.1 Robust Kinetic Data Structures . 164

7.1.1 Open Problems . 165
7.2 Observation-based Framework for Objects in Motion 167

7.2.1 Open Problems . 167

Bibliography 171

Index 182

iii

List of Tables

6.1 Results: Time and space bounds . 135

iv

List of Figures

2.1 Approximate range query example. 33

3.1 The expanded-greedy algorithm. 48
3.2 Range-sketch query example . 55
3.3 Range-sketch subroutine . 58
3.4 Update-greedy-disks subroutine . 59
3.5 Per-level subroutine . 60
3.6 Approximation ratio tightness example 66
3.7 Non-robust kinetic k-center algorithm 77

4.1 Partitioning algorithm . 94
4.2 Proof illustration for Lemma 4.2 . 96
4.3 Compression algorithm . 97

5.1 Experimental locality graph . 129

6.1 Temporal query trie example . 139
6.2 Temporal query semigroup example 145
6.3 A set of clumps and a spherical range 150
6.4 Proof illustration for Lemma 6.5 . 151
6.5 Experimental temporal range structure space graph 162
6.6 Experimental temporal query time graph 162

v

Chapter 1

Introduction

Work in theoretical computer science has focused, to date, on a fundamental

theoretical understanding and analysis of computer science as a discipline. However,

recent work has broadened the domain of problems considered to include theoretical

analyses of real-world motivated problems [HSV10,CHSV10,Cha09]. I believe that

theoretical computer science has important contributions to make in these realms

and that a theoretical analysis of practically-motivated problems is critical to the

solution of these problems as well as to the growth of theoretical computer science.

My work presented here is motivated by such issues and contributes directly to the

understanding and analysis of objects in motion.

Collecting information about moving points has become increasingly common.

This has often led to massive data sets containing point observations for multiple

time steps. As sensing technologies become increasingly inexpensive and available,

these data sets will only get larger. Currently, these data sets are quite diverse,

ranging from the sounds and positions of owls [MIT], to the movements of people in

a building [WILW07], to the locations of cars via GPS navigation devices or road-

embedded loop detectors [Tel,POR], or to the locations of fish in the ocean [POS].

The wide scope of applications involving motion has given rise to a diversity of

1

questions about these data sets. For example, these questions may involve migration

of animals, the dynamics of social relationships, and navigation in the presence of

traffic. Due to the vast amounts of data involved, these problems require automated

and efficient solutions. With the development of sensors of lower cost and higher

reliability, the prevalence of applications and the need for efficient processing and

storage will increase. Additionally, in many real-world applications it is common

for the data set to contain observations that do not exactly fit a given model; thus

outliers are common. This thesis answers questions inspired by this real-world data

via a sensor-based theoretical framework for motion data.

Many areas within and outside of computer science consider calculation of

properties of moving points. The nature of these calculations and the associated

computational challenges depend on the particular area of study. For example, when

working with wireless sensor networks, the question is often how to capture the data.

Problems of sensor limitations due to processing capacity, limited power sources, and

communication range are considered along with calculation on the data collected by

the entire network [ASSC02]. Within the database community, the question is how

to store and answer queries involving these points [Wol02]. Physicists, on the other

hand, consider statistical calculations on moving points as part of simulations and

similar simulations underly animation in computer graphics [Mon05]. Compression

of moving points is also considered within computer graphics for video compression

needs [BCMR03,Gal91].

Motion is a continuous phenomenon. However, the practical limits on its mea-

surement have resulted in a variety of methods ranging from continuous modeling

2

to discrete modeling involving discrete time steps. In the field of computational

geometry, most of the research has focused on piecewise continuous motion of ob-

jects, called kinetic data [GJS96, Ata85, ST95, ST96, BGH97, BG99]. Most of these

rely on a priori information about point motion and expect a “flight plan” in the

form of an algebraic formula of constant degree, thus restricting the point motion as

well. A survey of practical and theoretical aspects of modeling motion can be found

in [AGE+02]. The kinetic data structures (KDS) model proposed by Basch, Guibas,

and Hershberger [BGH97,BG99] has become the standard method for dealing with

kinetic data. The KDS model requires algebraic expressions representing point mo-

tion, but allows these “flight plans” to change. There has not been as much work

within computational geometry on discrete modeling of motion [Kah91]. Continu-

ous modeling allows for perfect accuracy in theory, assuming that objects adhere

to the given flight plans, while discrete modeling is less precise but more practical,

simulating actual data collection.

1.1 Contributions

In this dissertation, I consider statistical problems for both continuous and dis-

crete models. One of the problems that hasn’t been considered within the domain of

moving points is robustness. Robustness is an important statistical characteristic of

an estimator; it ensures that the presence of some data outliers due to measurement

error or heterogeneity of the data set does not alter the result by a large amount.

The breakdown point makes this notion precise and is defined to be the smallest

3

percentage of arbitrarily large outlying data which can cause an arbitrarily large

estimate result [Ham71]. The largest a breakdown point can be is 50 percent, since

any larger percentage of outlying data makes it impossible to distinguish between

inliers and outliers.

A natural class of geometric problems with statistical properties to consider

is clustering. These problems group points in some metric into subsets (known as

clusters) that are the best possible under some criterion. These criteria are often

based on a user given parameter k that determines the number of clusters or the

number of points per cluster. The best clustering is then defined based on an

individual cluster distance measure, such as cluster radius, and a merge function

over all the clusters, such as summation [BE97]. When the points are moving,

clustering problems can be considered to create clusters that move with the points

over time [GGN06] or can create static clusters that provide an approximation of

the optimal at any time step [HP04]. Clustering problems have many applications

including analysis of social networks, image or video segmentation, and analysis of

vehicle motion [SS07]. The work presented in Chapter 3 considers a robust clustering

problem on a continuous model (the KDS model)1.

A more practical approach that aims to allow statistical calculations with

greater efficiency is presented in Chapter 42. This work presents a new framework

for kinetic data that is based on a discrete sampling model. Data collection through

sampling is commonly done using sensors, and the new model takes this approach.

1For a published version of the work presented in Chapter 3, see [FM10a].
2For a published version of the work presented in Chapter 4, see [FM09].

4

There is a growing appreciation of the importance of algorithms and data structures

for processing large data sets arising from the use of sensor networks, particularly

for the statistical analysis of objects in motion.

The framework presented in Chapter 4 assumes very little about the motion

of the objects under consideration – it is purely observation-based. Each sensor is

assumed to observe the motion of objects in some region surrounding it, and record

an occupancy count indicating the number of objects passing within its region during

the observed time step. The object motion is thought of as continuous even though

the observation of it is discrete. (These results apply more generally to any discrete

statistic over a domain of constant size.) No assumptions are made about the nature

of the point motion nor the nature of the sensor regions (e.g., their shapes, density,

disjointness, etc.). It is to be expected that the entities observed by one sensor

will also likely be observed by nearby sensors, albeit at a slightly different time.

Central to the framework is the notion that each sensor’s output is statistically

dependent on a relatively small number of nearby sensors. This assumption is

verified experimentally in Chapter 5.

With the goal of handling observed data from these sensor networks, it is im-

portant to create a realistic system that can store and retrieve the large amounts

of data generated. In Chapter 4 we consider the first issue, that of compression for

storage. Compression methods may either be lossless (allow the original data to be

fully reconstructed) or lossy (some of the data may be permanently lost through

approximation methods). Previous compression of sensor data in the literature

has focused largely on approximation algorithms in the streaming model or lossy

5

compression of the data. We consider lossless compression. This is often more

appropriate in scientific contexts, where analysis is performed after the data has

been collected and accurate results are required. The analysis of these results may

necessarily include consideration of outliers or unusual data features that might be

smoothed away by lossy compression techniques. In addition, in scientific contexts

the loss of data associated with any kind of lossy compression is considered unac-

ceptable. Lossless compression algorithms have been studied in the single-string

setting [Huf52, Ris76, ZL77, ZL78] but remain mostly unstudied in a sensor-based

setting [FM09].

Intuitively, the compression algorithm is based on the following idea. If two

sensor streams are statistically independent, they may be compressed independently

from each other. If not, optimal compression can only be achieved if they are

compressed jointly. The algorithm works by compressing the outputs from clusters of

nearest neighbor groups together, as if they were a single stream. In order to obtain

the desired compression bounds, these clusters must be sufficiently well separated

so that any two mutually close sensors are in the same cluster. The algorithm

partitions the points into a constant number of subsets for which this is true and

then compresses clusters together to take advantage of local dependencies. The

compression of a single cluster may be performed using any string compression

algorithm; to obtain the near optimal bound, this algorithm must compress streams

to their optimal entropy bound. Assuming such an algorithm, the compression

algorithm achieves an encoding size within a constant factor of the optimal joint

entropy bound.

6

The compression algorithm presented in Chapter 4 is initially analyzed in

terms of the Shannon entropy [Sha48] and assuming pure statistical independence

of distant sensor outputs. However, in the realistic settings that motivate this work

these assumptions are too strong. In Chapter 5 a more realistic analysis is given of

the compression algorithm in terms of the empirical entropy of the sensor outputs.

Empirical entropy [KM99] operates over the observed probabilities of data streams

and assumes a history window of fixed size within which local dependencies may

appear. Both of these properties represent realistic improvements over the Shannon

entropy, which requires knowledge of an underlying random process generating the

data and assumes an infinite window size (optimality analyses hold in the limit

[WZ94]).

In order to fully understand the algorithm, Chapter 5 introduces new empir-

ical entropy constructs analogous to statistical joint entropy, conditional entropy,

and independence. These new definitions allow an empirical entropy analysis of the

compression algorithm that shows that, when the underlying string compression al-

gorithm used is the Lempel-Ziv dictionary compression algorithm [ZL78], the sensor

data compression algorithm is still on the order of the optimal encoding bound.

In addition, Chapter 5 investigates a more lenient independence assumption

for the model. Instead of assuming strict statistical or empirical independence, the

new assumption allows some limited underlying dependence between even distant

sensor outputs. For example, this might represent the general decrease in traffic

volume across all sensor regions at night. Under this limited independence model,

the sensor data compression algorithm is shown to be on the order of the optimal

7

encoding bound. With these realistic analyses in place, higher level questions about

the data can now be considered.

In order to consider more complex statistical analyses of the data collected

by this observation-based framework, it is important to be able to retrieve data

from its compressed form. In this effort, I consider a retrieval problem over the

compressed data without the need to decompress it. The implied assumption is

that when dealing with massive data sets that required compression in order to be

stored, it is necessary not to have to decompress the data in order to retrieve the

desired information. Recently, many problems of this form have been considered

including finding all occurrences of a given pattern in the text [FM05], retrieving a

specific substring [FV07], and querying compressed XML databases [FLMM06].

In Chapter 6, I present the first range searching data structures and algorithms

operating over compressed text3. The specific range searching question considered

allows for retrieval of the aggregate number of moving objects counted in a specific

spatial region over a given temporal period. An analysis relying on the realistic

assumptions of Chapter 5 shows that these data structures and algorithms operate

with preprocessing time and space on the order of the encoded size of the data and

have query time logarithmic in the total observation time and number of sensors.

Additionally, experimental analysis shows that these structures take an order of

magnitude less space than the uncompressed version of the data while still providing

faster query times than a naive method. Although interesting in its own right, I

believe that this range searching structure can serve as the underlying data structure

3For a published version of the work presented in Chapter 6, see [FM10b].

8

for future higher level statistical analyses of data collected within this framework.

My ultimate goal, no matter the framework, is to answer statistical questions

about kinetic data with provable efficiency. I believe that many open problems re-

main in this particular area, as well as in many other areas inspired by observation

of real-world data. Kinetic data models can vary in terms of practicality, theo-

retical purity, point motion assumptions, and data collection methods. Similarly,

there are many analysis methods which can be applied to these models, and the

choice of method may vary by model. Competitive and exact analyses can con-

sider communication complexity, storage size, algorithm run time, and other model

specific features. In addition, all of these questions should be examined with re-

gards to practical applicability in multiple domains. Many problems remain to be

considered within these various models. Robust statistical estimators can be con-

sidered including the point set diameter, clustering problems, and the least median

of squares estimator. Other range searching and retrieval questions could also be

considered. There may also be many practically inspired, domain-specific problems

that remain to be discovered. In Chapter 7, I introduce some of these open prob-

lems. Some are inspired by the specifics of the solutions presented here while others

come from the broader context of understanding moving objects.

9

Chapter 2

Literature Review

2.1 Data Structures for Moving Points

One of the first papers about calculations of properties of moving points in a

computational geometry context was written in 1985 by Mikhail Atallah [Ata85]. In

this beginning work, points are assumed to follow paths, also known as flight plans,

modeled by polynomials of degree at most k that are functions of time; these motion

paths are provided at the beginning of the algorithm and do not change. Atallah

examines the properties of these function interactions in a static context with time

as an additional dimension. He gives results regarding the descriptive complexity of

the lower envelope (that is, the minimum value over all the functions) and the 2-D

convex hull over all time steps. He also gives time complexity results for calculating

these changing quantities. While points are modeled by polynomials, they are not

assumed to be continuous at all points; instead, the number of undefined periods of

time and discontinuous jumps are assumed to be bounded (O(1)).

Atallah showed that the concept of Davenport-Schinzel sequences are impor-

tant in this context. A Davenport-Schinzel sequence of order s is a sequence of

characters from an alphabet of size n that does not contain any consecutively re-

10

peating characters or any alternating subsequences of length s+2 [SA95]. Let λs(n)

denote the maximum lengths of such a sequence. Atallah showed that, when con-

sidering the functions over time, there can be at most λs(n) function pieces in the

lower envelope of this collection, or λs(n) possible values for the minimum value of

the function set over time. Atallah’s proof proceeds by showing that λs(n) directly

models a lower envelope by assigning characters to each function piece on the lower

envelope. Since consecutive repeating characters would model the same function

appearring next to itself, these do not occur. For functions that do not intersect

more than s times, it is impossible to have alternating subsequences of length more

than s + 2. He shows that since λs(n) is bounded by O(n log∗ n), the number of

function pieces on the lower envelope is also O(n log∗ n). (More recent research has

tightened these bounds [SA95]).

The bound on the number of lower envelope changes is also used to provide a

bound on the number of convex hulls over time. Atallah shows that a single point

changes from being in the convex hull to not in the convex hull O(λs(n)) times by

defining membership in the convex hull based on the minimization of a function.

This is then applied to all n points to get a bound of O(n · λs(n)) convex hulls.

Other early papers include a 1983 paper by Guibas, Ramshaw, and Stolfi

[GRS83], which views point motion as following predetermined curves and polygons.

It frames questions in terms of the relationships between these curves and polygons.

In 1991, Kahan [Kah91] was the first to introduce a framework for motion in which

flight plans are not used, and the only required prior knowledge is an upper bound

on each point’s velocity. Instead, Kahan’s model relies on a function that can

11

be queried to determine current point locations. Schömer and Thiel examined the

problem of collision detection between moving polyhedra in a series of papers in 1995

and 1996 [ST95, ST96]. Motion is described in advance by polynomial functions.

Similarly, a 1996 paper by Gupta, Janardan, and Smid [GJS96] considered collision

detection, minimum separation, and other problems on points, line segments, or

hyperrectangles moving on predetermined linear paths. In 1997, Basch, Guibas,

and Hershberger [BGH97,BG99] introduced the kinetic data structures (KDS) model

and this became the standard for moving point calculation. This framework also

requires a predetermined functional model for each point’s path, but allows these

models to change at discrete time instances. The KDS model is discussed in more

detail in Section 2.2.

Despite the progress to date in modeling motion, many real-world inspired

issues remain to be addressed. In an effort to precisely identify these areas and spur

research into a unified motion framework a group of researchers participated in a

workshop in 2002, which produced a survey of these issues across computational

geometry, mesh generation, physical simulation, biology, computer vision, robotics,

spatio-temporal databases, and mobile wireless networks [AGE+02]. They also sug-

gested directions for future research. Here, we focus on the problems they describe

that relate directly to the work of this thesis.

Within computational geometry, Agarwal et al. [AGE+02] propose research

into motion-sensitive algorithms, bounds on the number of combinatorial changes,

and decentralization. Motion-sensitive algorithms give complexity bounds that are

based not on the worst case bounds given any point motion, but provide efficiency

12

measures based on the predictability of the moving objects and their relation to

each other (note that the framework that we will introduce later in Chapter 4 is

motion-sensitive). Similarly, they propose analyzing the number of combinatorial

changes to a property as a function of the objects’ motion complexity instead of

a simple worst-case bound. These proposed methods have the advantage of more

realistically modeling the efficiency of algorithms on moving point sets. In addition,

for practical use in many situations such as ad-hoc networks, they mention that

it would be useful to develop a model for motion that allows computation to be

distributed over multiple processors.

In the field of computer vision, motion analysis is used for applications in-

cluding shape identification and tracking, initialization of a tracking sequence, and

handling additional complexity in terms of lighting, motion, or shape. Statistical

error analysis is used to create models of object motion. Agarwal et al. [AGE+02]

suggest that further broadening of research consider multiple frames for tracking

initialization, robustly handle error through learning-based methods, and generally

view motion through a high-level hierarchical view in order to take advantage of all

the data available. Challenges in the field of wireless networks echo the need for a

hierarchical view of the data. Agarwal et al. [AGE+02] propose that research focus

on modeling predictable user motion at many levels in the data hierarchy. The hope

is that these models would allow future motion to be predicted based on the model

for a single level without detailed knowledge of motion at other levels, for example

without knowing the motion of an individual at the lowest level of the hierarchy.

Overall, Agarwal et al. [AGE+02] identify eight common themes of issues that

13

remain to be addressed in motion modeling. These include the ability to handle

robustness, both in the context of data error and in the context of higher level

analysis of motion trends through the use of hierarchical data structures. The

struggle between continuous and discrete models remains to be fully explored, with

research in continuous models not being confined to the theoretical community and

discrete models not only being analyzed by practical researchers. Coupled with this,

methods of identifying current motion of objects with an emphasis on unpredicted

motion remain to be fully explored. Finally, the decentralization of data processing,

a requirement in many practical applications, is especially important. Section 2.3

returns to some of these questions, and in Chapter 4 we present a framework that

addresses some of these issues.

One interesting alternate method for handling kinetic data was proposed by

Har-Peled in 2004 [HP04]. He examines the discrete k-center clustering of a set

of points moving with motion modeled by polynomials of degree at most µ. The

discrete k-center problem is given a set of n points and finds the k center points

taken from the input that minimize the maximum distance (called the radius) from

any point to its closest center. For this clustering problem, each center together with

the points that are closest to that center constitute a cluster. Instead of maintaining

the k clusters as they change over time, Har-Peled finds a single static clustering

with kµ+1 clusters that is within a constant factor of the optimal clustering at any

time. He begins with a clustering algorithm for a static point set that randomly

samples points, partitions those points into k clusters, and then partitions all points

that were not covered by the first clustering into an additional k clusters. This

14

two-round clustering algorithm is then extended to an η-round clustering algorithm

by repeating the first two steps for uncovered points.

To handle moving point sets, Har-Peled partitions time into intervals when

the relative distances between points do not change. For each of these intervals, the

Gonzalez [Gon85] greedy clustering algorithm (which bases the partitioning only

on inter-point distances) is used as the black-box clustering algorithm needed by

Har-Peled’s static clustering algorithm. The radius returned is a 2-approximation

of the optimal over that interval, where the time for the optimum over the interval

is found by calculating the lowest point on an upper-envelope representing radius

lengths. The set with the minimum radius over all the intervals gives the answer to a

different kind of clustering problem in a dimension one larger than the original (the

dimension for time is added). This set is then expanded to create a static clustering

with more centers that holds over time. Har-Peled’s algorithm runs in O(nk) time for

k = O(n1/14). Other algorithms that use a similar strategy of considering the points

statically in a higher dimension including time are those posed by Atallah [Ata85],

Guibas et al. [GRS83], and Gupta [GJS96]. The current standard for calculating

properties of moving points is the KDS model that handles motion in an online

manner. It is described in the next section.

2.2 Kinetic Data Structures Model

Basch, Guibas, and Hershberger [BGH97,BG99] introduced a model for kinetic

data called a kinetic data structure (KDS). This model assumes advance knowledge

15

of point flight plans, but allows these plans to change. Algorithms are developed

to track specific properties of moving points in an online manner. This is done

through a set of boolean conditions called certificates and a corresponding set of

update rules. Certificates guarantee geometric relations necessary to a particular

problem’s solution, and update rules specify how to respond when a certificate fails.

Certificate failures are predicted and queued based on the points’ planned paths of

motion, assumed to be in the form of algebraic expressions. KDSs are evaluated

based on properties of the certificate set.

There are four criteria under which the computational cost of a KDS is evalu-

ated: responsiveness, efficiency, compactness, and locality [Gui04]. Responsiveness

measures the complexity of the cost to repair the solution after a certificate fails.

Efficiency measures the number of certificate failures as compared to the number

of required changes to the solution as the points move. Compactness measures the

size of the certificate set. Locality measures the number of certificates in which

each point participates. Guibas provides a more detailed overview of kinetic data

structures in [Gui04].

In order to illustrate the KDS model, Basch et al. [BGH97,BG99] give a KDS

that maintains the 2-D convex hull over time. First they consider the static solution

where each point (a, b) is dualized to the line y = ax+b and lower part of the convex

hull is viewed as the upper envelope of the set of lines. Finding the upper envelope is

done through a divide-and-conquer algorithm. The merging of two upper envelopes

proceeds by sweeping from left to right and determining, for each line intersection

point on either upper envelope, which envelope is higher. Certificates guarantee

16

relative properties of x and y coordinates and line slopes in order to maintain this

merge under motion. These certificates are set-up to only record relative properties

of those lines surrounding them, and the number of certificates kept for each line

intersection or line is a constant, so the KDS is compact, local, and responsive. The

argument for efficiency is based on a multi-dimensional upper envelope complexity

bound of O(n2 + ε) (which is modeled in the kinetic context by a three dimensional

set consisting of two spatial dimensions and one temporal dimension) [Sha94], which

bounds the number of events that may be caused by certificate failures in this KDS

system. The complexity of the moving convex hull is Ω(n2), so the KDS is efficient.

Although most KDS solutions are based on a particular computational prob-

lem, Gao et al. [GGN06] introduced a flexible kinetic data structure that can be

used to solve a number of different problems involving kinetic point sets. (Later

in Chapter 3, we will make use of this structure.) This structure is hierarchical in

nature, and can be used both as a tree-like access structure as well as a geometric

spanner (defined below). Gao et al. dubbed it a deformable spanner . The hierarchy

and spanner both update dynamically as the points move, so this data structure

provides an underlying framework on which future problems that rely on hierarchy

or spanner properties can be built.

A γ-spanner is a graph connecting points in a point set S in <d with the

property that for any two points in S, the distance between those points on the

graph is at most γ times the distance between those points in the underlying metric.

The deformable spanner is a (1+ε)-spanner. The aspect ratio, denoted α, is defined

as the ratio between the maximum and minimum distances between any two points

17

of S. For moving point sets, the aspect ratio α is actually a function of time. When

considering the aspect ratio in the context of time complexity, one simple solution

is to consider the maximum ratio over all times. Additionally, ε > 0 refers to a

user-given input parameter.

The Gao et al. [GGN06] spanner is constructed based on the concept of a

hierarchy of discrete centers. Given a point set S, a hierarchy of discrete centers is

a sequence of subsets S = S0 ⊇ S1 ⊇ ... ⊇ Sdlogαe such that the following properties

hold for 0 ≤ i ≤ dlogαe:

• Each center in Si−1 is within distance 2i of some center in Si, the ith level of

the hierarchy.

• Centers in Si are chosen from Si−1.

A center p at level i is said to cover a center q in level i − 1 if q is within

distance 2i of p. By definition each center q at level i− 1 is covered by some center

in level i. One such center p is selected (arbitrarily) to be q’s parent. The center

q is called the child of p. Other standard tree relationships are used including

ancestors and descendants (both of which are considered in the improper sense, so

that a node is an ancestor and descendant of itself) and siblings [CLRS01]. Cousins

are defined as the children of a node’s parents’ siblings. Some properties about

the deformable spanner, which follow immediately from the above properties or are

proven in [GGN06], are given below:

• Si ⊆ Si−1

• For any two center p, q ∈ Si, with associated points p, q,∈ S, ‖pq‖ ≥ 2i.

18

• The hierarchy has a height of at most dlog2 αe.

• Any center in S0 is within distance 2i+1 from its ancestor in level Si.

The deformable spanner maintains four types of certificates: parent-child cer-

tificates, edge certificates, separation certificates, and potential neighbor certificates.

Neighbors of a node p in level i are defined as all nodes in that level within distance

c · 2i of p. The certificates are based on this distance c · 2i, where c > 4 [GGN06].

The KDS for this spanner is appropriately efficient, local, compact, and responsive.

Many other problems have been considered using KDS, including cluster-

ing, hierarchical data structures, and minimum spanning trees [BBKS00, AGG02,

AdBG09, BGZ97, Gui98]. For example, in 2008 Abam et al. presented a KDS that

maintains a (1 + ε)-spanner over point motion independent of the point set’s aspect

ratio. The spanner is based on the union of Delauney triangulations done over the

points where distance is defined based on a metric that uses a diamond instead

of a unit circle and the diamond is rotated for each triangulation. The Delauney

triangulation based on the Euclidean metric is easy to kineticize since there are

local properties that guarantee the triangulation and corresponding local update

rules. Abam’s spanner uses similar properties and update rules modified for the

diamond-based metric and is shown to be efficient.

2.3 Sensors and Streams

Let us now move from the continuous model of motion exemplified by KDS to

systems that analyze motion based on discrete time samples. One practical way to

19

observe and record motion is through the use of sensors in a sensor network. Sen-

sors are small nodes with the ability to sense characteristics of their environment

in addition to limited data processing and communication ability. Sensor networks

contain many sensors as nodes networked with each other that are densely deployed

to observe some environment. These networks can be applied for military benefit,

environmental protection, health monitoring, household convenience, vehicle detec-

tion, and in many other situations [ASSC02].

Akyildiz et al. [ASSC02] identify eight main issues in sensor network design in

a 2002 survey of research in wireless sensor networks. Some of these constraints are

specific to sensor networks and require new techniques and technologies. Sensors

are assumed to be cheap, which allows broad use, but also means that they are

prone to failure. Correspondingly, sensor networks are evaluated based on their fault

tolerance, their ability to continue operating without interruption if some sensors

fail. The specific level of fault tolerance needed, as measured by the probability that

no nodes will fail within a given time interval, is dependent on the measurement error

and added environmental strain on the sensors based on the application. Scalability

refers to the ability of the network to operate efficiently on millions of nodes and to

take advantage of the high density of sensor deployment. Due to the vast number of

sensors in the network and their tendency to fail, the sensor network topology must

be highly malleable. Production costs of each node must be low in order to make

these sensor networks cost effective, and there are many hardware challenges, both

related and unrelated to cost. The network must be able to operate unattended for

long periods of time, and may encounter harsh environmental factors depending on

20

the application and deployment location. In order to utilize this network, the sensors

must be able to communicate with each other and, possibly through multiple hops,

with a central server. The transmission media chosen should be globally available

and not require a line of sight between sender and receiver (as is required by infrared

communication). Finally, power consumption on individual sensor nodes is one of

the most important areas of research, since the sensors have limited battery life and

sensors that run out of power must be removed from the network. Limiting power

consumption while sensing, communicating, and processing data is crucial [ASSC02].

The data collected by the sensors at small time intervals over the entirety of

their lifespan (which is theoretically infinite) is reported at each time step and makes

up what is known as a stream of data. More formally, data streams are a sequence of

data items that arrive online, are potentially unbounded in size, arrive in an unde-

termined order, and are discarded after they have been processed. In a 2002 survey

of models and issues in data stream systems, done from a databases perspective,

Babcock et al. [BBD+02] present current query challenges. The main underlying

challenge is the problem of unbounded memory requirements due to the potentially

unbounded length of the sequence of data. In addition, Arasu et al. [ABB+04] show

that without knowing the length of the input data stream, it is impossible to bound

the memory requirements of a single query using a join operation. Due to these mem-

ory constraints, approximations to query answers are desirable. Random sampling,

histograms, and other synopsis techniques can be used to provide an overview of

the entire data stream. Alternatively, sliding windows allow queries to be answered

based only on recent data within some limited time frame. This approximation

21

has the advantage of being well-defined, deterministic, and, for many applications,

emphasizing the recent data the user cares about. However, the data to be included

in the window becomes less clear when defined over multiple streams. Other ap-

proximation techniques depend on the relative speed of the operations that update

data and compute query answers. Fast updates (relative to slow answer computing)

suggest batch processing, in which many updates are made before the answer is

computed. Fast answer computing (relative to slow updates) suggest stream sam-

pling followed immediately by updates, although such a scenario does not admit

provable approximation guarantees [BBD+02].

In addition to the approximation necessitated by the memory challenges inher-

ent in data stream processing, there are also queries that are impossible to answer

accurately in the present, blocking query operators and queries based on past data.

Blocking queries are queries that may not be answered until they have seen the

entirety of the data; for example, sorting queries or those involving aggregation

(summation, mean, etc.). Approaches to answering these queries include replacing

the query with a non-blocking query with an approximately similar result, main-

taining an answer given the data seen so far, and reasoning based on an augmented

data stream containing assertions about future data. Queries involving past data

must rely on data summaries. Creating these summaries is challenging since future

queries are unknown and all data may not be stored. Answers to these queries are

likely to be approximate. A solution that side-steps this issue is to state to the user

that any such queries will consider only the data stream beginning at the time the

query is issued [BBD+02].

22

The literature on sensors and streams is too vast to cover completely here,

instead we discuss a small number of relevant papers. Cormode et al. [CMZ07]

consider a problem over data streams generated by distributed sites. They are the

first to consider the the maintenance of the continuous discrete k-center clustering

problem and give accuracy guarantees. They propose four methods and compare

them theoretically and experimentally. These four algorithms combine local and

global methods with the Gonzalez farthest point algorithm [Gon85] and the parallel

guessing algorithm. The local algorithms distribute the clustering decisions and then

merge to find a global clustering. Cormode et al. show that merging α-approximate

clusters using a β-approximate technique results in an (α+ β)-approximate cluster-

ing. The global algorithms distribute the monitoring of the validity of the current

clustering, but assume transmission of that data to a central server for a global

recalculation of clustering when required. The Gonzalez farthest point algorithm,

used at the distributed sites for local clustering or by the central server for global

clustering, sequentially chooses the point farthest from any identified cluster. It is

known to give a 2-approximation of the optimal k-center clustering [Gon85]. The

parallel guessing algorithm guesses some radius r and creates a new center and

marks points within distance r of that center as clustered anytime it encounters a

point that is not currently in a cluster. This algorithm is run in parallel for multiple

guesses of r and the number of guesses is dependent on the aspect ratio of the point

set. The guess with minimum r that still clusters all points into at most k clusters

is the resulting clustering. This algorithm is shown to be a (2 + ε)-approximation

of the optimal clustering [CMZ07].

23

Cormode et al. show that both local algorithms are (4 + ε)-approximations

and both global algorithms are (2 + ε)-approximation of the optimal clustering.

Both implementations of the Gonzalez algorithm require O(n) space while both

implementations of the parallel guessing algorithm require O(k
ε

logα) space, where

α is the aspect ratio. Communication required is shown to be O(km
ε

logα) for both

versions of the parallel guessing algorithm, where m is the number of distributed

sites. However, no communication bounds are known for the Gonzalez local and

global algorithms. Experimentally, the communication bounds for the versions based

on the Gonzalez algorithm were shown to be worse than those for the local parallel

guessing algorithm. The local parallel guessing algorithm was shown experimentally

to require communication costs of less than one percent of the cost to send all

information to a central server [CMZ07].

Other problems considered over data streams include functional monitoring

problems, which keep track of a function output based on the data stream inputs in

an online manner. The accuracy of the function value is based on an error param-

eter ε. Cormode et al. [CMY08] considered the problem of monitoring monotone

functions over distributed data streams and give worst-case bounds on the number

of updates to the function they maintain. Yi and Zhang [YZ09] considered arbitrary

d-dimensional functions over a single data stream. They use competitive bounds to

show that they update the function they maintain O(d2 log(dε)) times for every one

time the function is updated by the optimal algorithm.

24

2.4 Data Compression and Entropy

The handling of large data sets often requires reducing the necessary storage

size through a data compression algorithm. Compression algorithms represent the

data set as a single string of information and return a smaller encoded string of

compressed data. If the encoded string can be restored exactly to its original form,

the algorithm is known as lossless . If the string cannot be restored exactly after

being compressed, the algorithm is known as lossy . Shannon’s source coding the-

orem states that in the limit, as the length of a stream of independent, identically

distributed (i.i.d.) random variables goes to infinity, the minimum number of re-

quired bits to allow lossless compression of each character of the stream is equal to

the entropy of the stream [Sha48]. The entropy of a string of characters taken from

a random source X is defined to be −Σxpx log2(px) where x is an outcome of the

random process. The optimal length of an encoded string is equal to the string’s

entropy. Compression algorithms that achieve this optimum are known as entropy

encoding algorithms.

Many entropy encoding lossless compression algorithms have been considered

including Huffman coding [Huf52], arithmetic coding [Ris76], the Lempel-Ziv dictio-

nary algorithm [ZL78], and the Lempel-Ziv sliding-window algorithm [ZL77]. Huff-

man coding replaces characters with symbols so that the most probable characters

are given the shortest symbols, and the least probable are represented by the longest.

Arithmetic compression encodes the entire string in a base so that each character

corresponds to a different digit in a fractional number. The entire string is then

25

translated to a binary number that is precise enough so that the original number

can be retrieved. The Lempel-Ziv dictionary algorithm [ZL78] adds matches to a

prefix-tree and stores the tree along with an ordered list of pointers instead of the

full string. (This algorithm will be used and described in more detail in Chapter 6.)

We will examine the Lempel-Ziv sliding-window algorithm [ZL77] in more

depth. The algorithm proceeds by looking for matches between the current time

position and some previous time within a given window into the past. The length and

position of these multi-character matches are then recorded, which reduces the space

of encoding each character. The window moves forward as time progresses. Note

that this algorithm operates on the string in an online fashion, containing a valid

encoding at any time. The encoding involves splitting the string into a collection of

phrases, each of which is then encoded into a tuple. There are two types of tuples. A

tuple of the form ′(0, X)′ indicates a single plaintext character ′X ′, and a tuple of the

form ′(1, i, j)′ indicates a repeated string of length j starting at the i-th preceding

character. For example, consider the encoding found using a window size of three

on the string AABBAB. The encoded string is (0, A)(1, 1, 1)(0, B)(1, 1, 1)(1, 3, 2).

Intuitively, it is clear that larger window sizes yield better results since long matches

are more likely to be found. In the example, this corresponds to a preference for the

pointer (1, 3, 2) and not for the pointers (1, 1, 1) since (1, 3, 2) saves more space.

In 1994, Wyner and Ziv proved that the optimal encoded length for the

Lempel-Ziv sliding-window algorithm is achieved by taking the limit as the win-

dow size tends to infinity [WZ94]. The precise optimal length is shown to be equal

to the entropy of the string. The proof proceeds by showing that the expected num-

26

ber of bits to encode any character of the string is at most the number of bits to

encode the first window plus the normalized expected value of the sum of the match

encoding lengths. The latter value is identified using Kac’s Lemma, which states

that for some character α that has a positive probability P0(α) of occurring at time

0 (the present), Σ∞i=1iP−i(α) = 1/P0(α), where P−i(α) is the conditional probability

(given that the character at time 0 is α) that the most recent occurrence of α was

at time −i. Other lemmas are introduced to show that as the length of the string

becomes arbitrarily large, the probability that the closest match is farther away

than a function dependent on the entropy goes to zero. So the sum of the match

encoding lengths, which is equal to the length to encode unmatched phrases plus the

length to encode matched phrases, becomes at most the length of the encoding for

matched phrases. These are shown to approach the entropy, or information content,

of the string.

2.4.1 Empirical Entropy

While entropy is a beautiful theoretical concept, when considering observed

streams of data it has two important drawbacks. The first is a consequence of the

Wyner and Ziv proof [WZ94]; the entropy encoding bounds on some algorithms

only hold as the window size approaches infinity. When considering observed data,

it would be better to have the bounds hold within some realistically sized window.

The second drawback is a result of the statistical setting in which entropy is consid-

ered; an underlying random process must be assumed, and in order to calculate the

27

entropy we must have access to the associated probability distribution. Again, when

collecting data from some observed source we are unlikely to know this information.

Empirical entropy was introduced to address these concerns.

Empirical entropy is defined over the observed probabilities of the data and

can consider windows of fixed length k ≥ 1. Given a string X of length T drawn

from some alphabet Σ, let c0(x) be the number of occurrences of x ∈ Σk in X

and c(x) be the number of occurrences of x in the substring of X not including

the final character. Let the observed probability of x appearing in X be denoted

pX(x) = c(x)/(T−k). Kosaraju and Manzini [KM99] defined the 0th order empirical

entropy of such a string X to be

H0(X) = −
∑
a∈Σ

pX(a) log pX(a) = −
∑
a∈Σ

c0(a)

T
log

c0(a)

T
.

The 0th order empirical entropy definition considers only the substrings of

length 1 (single characters) and determines the empirical entropy based on the

observed probabilities of these characters within the string. The following definition

generalizes this to consider substrings of length k. These substrings are analogous

to the windows discussed earlier, and allow some history of the string to be taken

into account. To quantify this history, we consider the observed probability that

some character a ∈ Σ is the character immediately following some substring x ∈ Σk.

Denote this observed probability as pX(a|x) = c(xa)/c(x). The kth order empirical

entropy of a string X is defined by Kosaraju and Manzini [KM99] to be

Hk(X) = − 1

T

∑
x∈Σk

c(x)

[∑
a∈Σ

pX(a|x) log pX(a|x)

]
.

28

In Chapter 5 we extend these definitions to consider joint empirical entropy, condi-

tional empirical entropy, and empirical independence.

As implied earlier, operating under a fixed and finite window size has real

effects when considering an analysis of compression algorithms. In their paper,

Kosaraju and Manzini [KM99] consider the analysis of the Lempel-Ziv sliding win-

dow algorithm (LZ77) [ZL77] and the Lempel-Ziv dictionary compression algorithm

(LZ78) [ZL78] within the concept of λ-optimality. They define an algorithm to be

λ-optimal if its compression ratio is bounded by λHk(X) + o(Hk(X)) for any string

X. This definition has the nice property that both low and high entropy strings

are guaranteed to be compressed efficiently (previous similar definitions left out the

low entropy cases where lim|X|→∞ Hk(X) = 0). While, under the Shannon definition

of entropy, both LZ77 and LZ78 are optimal entropy encoding algorithms, under

this new definition neither is λ-optimal in all cases. LZ77 is shown to be 8-optimal

with respect to H0(X), but is not λ-optimal with respect to Hk(X) for any k ≥ 1.

LZ78 cannot be λ-optimal with respect to Hk(X) for any k ≥ 0, however when com-

bined with a run-length encoding scheme that efficiently encodes long substrings

of identical characters, LZ78 is 3-optimal with respect to H0(X). These analyses

allow more accurate understandings of the strengths and weaknesses of the different

compression schemes. Since this work, empirical entropy has become the standard

benchmark for analysis when the realism of the compression scheme is a concern

(see, for example, Manzini’s analysis of a commonly used compression tool, the

Burrows-Wheeler Transform [Man01]). The area of compressed text indexing thus

relies heavily on these concepts.

29

2.5 Compressed Text Indexing

Compressed text indexing (also known as the study of opportunistic data struc-

tures or succinct data structures), was first introduced by Ferragina and Manzini in

2000 [FM00]. The goal of such data structures is to compress and store the data

in space on the order of its empirical entropy, while still allowing relatively fast

query times. (For surveys of this area, see [CHSV10,HSV10,NM07].) The problem

considered by Ferragina and Mangini [FM00] with an accompanying opportunistic

data structure was the compressed matching problem.

The compressed matching problem, introduced by Amir and Benson [AB92], is

the problem of, given a string, finding all matching substrings in a compressed text

without decompressing it. The compressed matching problem has been studied in

numerous sources including [FM00,AB92,ABFC96,FM05]. Ferragina and Manzini’s

[FM00] original data structure achieved a space bound of O(Hk(X)) + o(1) bits for

some text X of length T and a time bound of O(|x| + occ logε T) where |x| is the

length of the pattern being searched for, occ is the number of occurrences of that

pattern in X, and ε > 0 is an error parameter. Ferragina and Manzini [FM05] later

improved this bound to 5T ·Hk(X)+o(T) space and O(|x|+occ·log1+ε T) query time

or, in a second data structure, O(THk(X) logε T) space and O(|x|+occ) query time.

Their data structure relies on the Burrows-Wheeler Transform [BW94], an invertible

mapping that transforms the given text into an easier to compress form. In short,

it operates by sorting all permutations of the text and then storing only the last

character of each sorted version. This rearrangement of the text is generally easier

30

to compress than the original. Ferragina and Manzini combine some ideas from the

Burrows-Wheeler Transform with those of a suffix array to create their compressed

suffix array that answers queries quickly while taking space on the order of the

optimal.

One of the practical successes of this area has been the demonstration of

compressed text indexing for XML data. This work relies mainly on paired papers

by Ferragina, Luccio, Manzini, and Muthukrishnan [FLMM05,FLMM06]. The first,

in 2005, considers the theoretical problem of how to store labeled trees succinctly

while still allowing basic tree retrieval operations, such as finding the parent or

child of a node and finding all children with a given label [FLMM05]. This paper

uses a transform that they dub xbw, which was inspired by the Burrows-Wheeler

Transform. It creates two arrays from the original data – one captures the structure

of the tree and the other the labels of the nodes. The tree structure is captured

by annotating nodes with strings containing information about the path from the

node to the root. Then nodes are sorted according to these path annotations. These

sorted annotations serve as the basis for the tree structure array. Mappings are also

introduced to translate from the tree to the array and back. Once these structures

are in place, tree queries are supported on top of them. The second paper, in 2006,

uses these theoretical ideas to implement a storage and retrieval system for XML

data. They show that in practice their storage system takes up to 35% less space

and is orders of magnitude faster on some queries.

The query type that is in some ways closest to the query considered in Chapter

6 is that of substring queries. Substring queries are given the indexes of some

31

substring in a compressed text and retrieve the associated substring in its original

form. Ferragina and Venturini give a storage scheme that can support these queries

and takes space close to the optimal kth order empirical entropy bound and optimal

O(1 + |x|
log|Σ| T

) time, where |x| is the length of the substring being queried, |Σ| is

the size of the alphabet, and T is the length of the text [FV07]. They achieve this

using only binary encodings and tables. This problem has also been considered

by [GN06,SG06].

Additionally, the Geometric Burrows-Wheeler Transform [CHSV08] uses range

searching techniques and results to better understand text queries by mapping text

to a set of points. This transformation is the basis for lower bound results on the

compressed matching problem as well as an I/O-efficient version of the compressed

matching problem and a version of the compressed matching problem restricted to

a substring of the text. A specific type of range searching is discussed in more detail

in the following section.

2.6 Approximate Range Searching

In Chapter 6 we introduce range searching over compressed text restricted by

both a spatial and temporal range. The temporal structure is inspired by the work

on compressed text indexing discussed in the previous section. In this section, we

discuss the traditional geometric work on range searching that influences our spatial

range structures. Generally, the idea of range searching is, given a point set P and

some range R, retrieve the result of some operation over all the points of P that

32

Figure 2.1: An example range with buffer zone is shown. The range is the indicated

by the solid edged disk, the inner and outer boundaries are indicated by dashed

lines, the required inclusion region is shown in dark grey, and the optional inclusion

region is shown in light grey.

lie within R. For example, the range might be some axis-aligned rectangle and the

operation might be counting the number of points that lie within it. For surveys of

this area, see [Mat94,AE98].

Here, we specifically discuss approximate range searching. Approximate range

searching is, given a point set P ∈ Rd of size n, some range R, and an error parameter

ε, the problem of retrieving the result of an operation over the point set restricted to

the range R with error ε. Error has been considered under two models: relative and

absolute [AM00,dFM10]. In each, a buffer zone at the edge of the range is created

and points strictly on the inside of the zone must be included in the operation while

points strictly outsize of the zone must not be included. Points within the buffer

zone can be included, but are not required to be. See Figure 2.1 for an example

showing the buffer zone. Under the relative error model [AM00], this buffer zone is

33

an ε multiplicative factor of the size of the original range, while in the absolute error

model [dFM10], the buffer zone is strictly an ε-width on either size of the range.

One important yet general range to consider within the approximate model

is that of fat convex ranges . These ranges, which are essentially defined to have

bounded aspect ratio [AM00], are used as representations of practical ranges and

are appropriate for approximate range searching since ranges with high aspect ratio

might have buffer zones that cover inappropriately large portions of the range under

the relative error model. Under the absolute error model, da Fonseca and Mount

[dFM10] show how to answer approximate range queries for fat simplex ranges with

preprocessing time O((n + 1/εd) logO(1)(n + 1/εd)), space O((1/εd) logO(1)(1/εd),

and query time O((1/εd−2+log(1/ε)) logO(1)(1/εd−2+log(1/ε))). Within the relative

error model, Arya and Mount [AM00] show how to answer approximate range queries

for convex ranges in preprocessing time O(n log n), space O(n), and query time

O(log n+ (1/ε)d−1, they also show that this query time matches the lower bound.

In order to achieve their results in the relative error model, Arya and Mount

[AM00] make use of a data structure called the balanced box-decomposition tree or

BBD-tree introduced by Arya, Mount, Netanyahu, Silverman, and Wu [AMN+98].

The BBD-tree creates a hierarchical decomposition of space and in that way is sim-

ilar to kd-trees [Ben75] and quadtrees [Sam84]. In a BBD-tree, the cells associated

with nodes may be either boxes or the set theoretic difference of two boxes, one

contained within the other. Each branching choice is either a split of a single box

along an axis-aligned plane or a shrink that partitions the points by an inner box

and the difference of that box and the bounding box of the current cell. With these

34

simple operations, the BBD-tree is able to achieve two important properties: an

O(log n) tree height and a bounded aspect ratio for the nodes’ associated cells. (We

make use of this structure in Chapter 6.)

35

Chapter 3

Approximation Algorithm for the
Kinetic Robust K-Center Problem

In this chapter, we consider two complications that frequently arise in real-

world applications, motion and the contamination of data by outliers. We consider

a fundamental clustering problem, the k-center problem, within the context of these

two issues. We are given a finite point set S of size n and an integer k. In the

standard k-center problem, the objective is to compute a set of k center points

to minimize the maximum distance from any point of S to its closest center, or

equivalently, the smallest radius such that S can be covered by k disks of this

radius. In the discrete k-center problem the disk centers are drawn from the points

of S, and in the absolute k-center problem the disk centers are unrestricted.

We generalize this problem in two ways. First, we assume that points are in

continuous motion, and the objective is to maintain a solution over time. Second, we

assume that some robustness parameter 0 < t ≤ 1 is given, and the objective is to

compute the smallest radius such that there exist k disks of this radius that cover at

least dtne points of S. We present a kinetic data structure (in the KDS framework)

that maintains a (3+ε)-approximation for the robust discrete k-center problem and

a (4 + ε)-approximation for the robust absolute k-center problem, both under the

36

assumption that k is a constant. We also improve on a previous 8-approximation for

the non-robust discrete kinetic k-center problem, for arbitrary k, and show that our

data structure achieves a (4+ε)-approximation. All these results hold in any metric

space of constant doubling dimension, which includes Euclidean space of constant

dimension.

3.1 Introduction

In the design of algorithms for optimization problems in real-world applica-

tions, it is often necessary to consider the problem in the presence of complicating

issues. We consider two such issues here. The first is the processing of kinetic data,

that is, objects undergoing continuous motion. The second confounding issue arises

when the data is heterogeneous and the statistical trends of the majority may be

obscured by the deviant behavior of a minority of points, called outliers. The ob-

jective is to produce a solution to some given optimization problem that is robust

to corruption due to outliers.

These two issues have been considered individually in the context of kinetic

data structures and robust statistics, respectively, but no published work to date has

involved the combination of the two. The combination of these two issues presents

unique challenges. One reason is the different effects these two issues have on the

structure of algorithmic solutions. Kinetic data structures are typically concerned

with handling local properties involving the interaction of a small number of ob-

jects. On the other hand, algorithmic solutions in robust statistics involve global

37

characteristics of the data set, such as identifying which subset of points constitutes

the majority. In this chapter we consider a well-known clustering problem, called

the k-center problem, in the context of kinetic data and outliers. We refer to it as

the kinetic robust k-center problem.

Many frameworks have been proposed for handling kinetic data [GJS96,Ata85,

ST95, ST96]. We assume a common model for processing points in motion, called

kinetic data structures (KDS), which was proposed by Basch, Guibas, and Her-

shberger [BG99]. In this model the motion of each point is given by a piecewise

function of constant algebraic degree, called a flight plan. KDSs track specific prop-

erties of moving points. This is done through a set of boolean conditions, called

certificates , and a corresponding set of update rules. Certificates guarantee geomet-

ric relations necessary to a particular problem’s solution, and update rules specify

how to respond whenever a certificate fails. The KDS framework has become the

standard approach for computing discrete structures for kinetic data sets because

it provides a general and flexible framework for the development of algorithmic so-

lutions that are both provably correct and efficient. Examples include maintaining

convex hulls [BG99], Voronoi diagrams [AGMR98], and minimum spanning trees on

geometric graphs [BGZ97].

Recall from Chapter 2.2 that there are four criteria under which the compu-

tational cost of a KDS is evaluated: responsiveness, efficiency, compactness, and

locality [Gui04]. Responsiveness measures the complexity of the cost to repair the

solution after a certificate fails. Efficiency measures the number of certificate fail-

ures as compared to the number of required changes to the solution as the points

38

move. Compactness measures the size of the certificate set. Locality measures the

number of certificates in which each point participates. (More information about

kinetic data structures is provided in Chapter 2.2.)

The other issue of interest in this chapter is robustness. The study of statistical

estimators that are insensitive to outliers is the domain of robust statistics [RL87].

Robust statistics have been extensively studied in mathematics, operations research,

and computer science. Robustness in the presence of outliers is important, for exam-

ple, when considering heterogenous populations that contain isolated and unusual

data points. It is also useful when considering business and public-service appli-

cations. Since cost is an important factor, it is desirable to provide a service to

a large segment of the population, while limiting expensive service costs involving

a small fraction of outliers. Charikar et al. [CKMN01] explored the robust facility

location problem, which determines the locations of stores while minimizing the dis-

tance from customers to the stores and the total cost of opening facilities. In such a

model it is unprofitable to open a new facility to service a small number of isolated

customers. Degener et al. [DGL10] gave a deterministic algorithm for the kinetic

version of the non-robust facility location problem and Agarwal and Phillips [AP08]

gave a randomized algorithm for the robust 2-center problem with an O(nk7 log3 n)

expected execution time.

We consider a clustering problem that involves a combination of these two im-

portant elements. Clustering is a frequently studied problem in operations research

and computer science. Common formulations include k-center, k-means, and facility

location problems [KH79, HS85, FG88, Ple87]. The (standard) k-center problem is

39

defined as follows: Given a set of n points, find k center points that minimize the

maximum distance (called the radius) from any point to its closest center. In the

discrete version the centers must be drawn from the original n points. In contrast,

in the absolute version the centers may be arbitrary points in space [KH79]. Unless

otherwise stated, we will assume the discrete version of the problem.

Kariv and Hakimi [KH79] proved that the discrete and absolute versions of

the k-center problem are NP-hard in a graph-theoretic context (for arbitrary k).

The problem of finding a (2 − ε)-approximation for the discrete k-center problem

is NP-complete (also in a graph-theoretic context) [Hoc95, Ple80]. The problem in

the Euclidean metric cannot be approximated to within a factor of 1.822 (assuming

P 6= NP) [FG88]. Demaine et al. [DFHT05] give algorithms for the k-center problem

on planar graphs and map graphs that achieve time bounds exponential in the radius

and k.

Since the k-center problem is NP-hard for arbitrary k or exponential in k

for fixed k, we consider approximation algorithms. An algorithm provides a c-

approximation to the k-center problem if the radius chosen for the k centers is

no more than c times the optimal radius. Feder and Greene [FG88] gave a 2-

approximation for the geometric k-center problem and Hochbaum and Shmoys

[HS85] and Gonzalez [Gon85] gave 2-approximation algorithms for the graph-theoretic

version of the k-center problem, both for arbitrary k. In light of the above lower

bound of (2− ε), these approximation algorithms provide the best possible approx-

imation bounds.

The robust k-center problem generalizes the k-center problem to handle outliers

40

by allowing flexibility in the number of points that satisfy the distance criteria.

In our formulation we are given a set of n points, an integer k, and a threshold

parameter t, where 0 < t ≤ 1. The objective is to compute the smallest radius

r such that there exist k disks of radius r that cover at least dtne points. The

non-robust version arises as a special case, when t = 1.

Since the robust k-center problem is a generalization of the non-robust version,

the 1.822 approximation lower bound [FG88] for the Euclidean context holds for the

robust k-center problem as well (assuming P 6= NP). Charikar et al. [CKMN01]

showed that in the graph-theoretic context, the robust k-center problem with for-

bidden centers (in which some locations cannot be chosen as centers), has a lower

bound of 3− ε. They also gave a 3-approximation algorithm for the robust k-center

problem. Chen gave a constant factor approximation algorithm for the robust k-

median problem [Che08].

The (non-robust) kinetic k-center problem is a generalization of the static

version, so again the 1.822 approximation lower bound [FG88] holds. No other lower

bounds are known for the kinetic problem. Gao, Guibas, and Nguyen [GGN06] give

an 8-approximation algorithm for the kinetic discrete k-center problem. Har-Peled

handles the discrete and absolute kinetic k-center problems with an O(nk) time

algorithm, which creates a larger static set of centers that is competitive at any

time [HP04].

The kinetic robust k-center problem has not been studied before, but many

application domains involving moving points benefit from robust clustering calcula-

tions. These include the segmentation problem in vision, which attempts to separate

41

meaningful parts of a moving image [CTS97, DM98, Wan98]; context-aware appli-

cations, which run on mobile devices that are carried by individuals and interact

with the environment and each other [WER07]; and traffic detection and manage-

ment, which we use as our main motivating example. Traffic detection has been

studied extensively with tactics that include using sensors [KEK+98, Gri98, SS07],

knowledge-based systems [CHM95], and individual vehicle monitoring (e.g., car GPS

navigation systems) [Gil06, ACI+00, Gol99]. Our model assumes individual vehicle

monitoring with the assumption of a flight plan provided by the navigation system

and a desired number, k, of congested areas to monitor.

Throughout this chapter, we will assume that the point set S resides in a space

of constant doubling dimension. We define the disk of radius r centered at point u

to be the set of points of S whose distance from u is less than or equal to r. A metric

space is said to have constant doubling dimension if any metric disk of radius r can

be covered by at most a constant number, λ, of disks of radius r/2. Euclidean space

of constant dimension is an example. The doubling dimension d is defined to be

log2 λ [KL04]. To generalize the concept of a metric space to a kinetic context, we

assume access to functions giving the distance between two points at a given time

and the earliest future time at which two points will be within some given distance.

3.1.1 Contributions

As mentioned above, we present the first concurrent consideration of two prac-

tical domains, robust statistics and kinetic data structures, and an approximation

42

algorithm and corresponding efficient kinetic data structure to solve the kinetic

robust k-center problem. Our algorithm approximates the static k-center, kinetic

k-center, and robust k-center problems as well, since all are special cases of our

problem.

The input consists of a kinetic point set S in a metric space of constant dou-

bling dimension d, the number of centers k, a robustness threshold 0 < t ≤ 1, and

an approximation parameter ε > 0. Some of our complexity bounds depend on the

aspect ratio of the point set, which is defined as follows in a kinetic context. Let

dmin and dmax be lower and upper bounds, respectively, on the distance between any

two points over the entire motion. The aspect ratio, denoted by α, is defined to

be dmax/dmin. We obtain a (3 + ε)-approximation for the static and kinetic forms

of the robust discrete k-center problem and a (4 + ε)-approximation for the abso-

lute version of the robust k-center problems. Note that the first bound improves

upon the 8-approximation for the kinetic discrete k-center problem as given by Gao,

Guibas, and Nguyen [GGN06] and generalizes it to the robust setting. However, due

to complications arising from the need for robustness, our result assumes that k is

constant, while theirs holds for arbitrary k. We improve their result for the non-

robust kinetic problem for arbitrary k by showing that our data structure achieves a

(4+ε)-approximation, while maintaining the same quality bounds as their KDS (see

Section 3.5). To our knowledge, our kinetic robust algorithm is the first approxima-

tion algorithm for the kinetic absolute k-center problem (even ignoring robustness).

We give an example in Section 3.3.3.1 to show that our (3 + ε)-approximation for

the robust discrete k-center problem is tight.

43

The KDS used by our algorithm is efficient. In Section 3.4.3 we will establish

bounds of O((logα)/εd) for locality and O(n/εd+1) for compactness. Our responsive-

ness bound is O((log n logα)/ε2d), implying that the data structure can be updated

quickly. Our efficiency bound of O(n2(logα)/ε) is reasonable since the combinato-

rial structure upon which our kinetic algorithm is based requires Ω(n2) updates in

the worst case (even for the non-robust case) [GGN06], so any approach based on

this structure requires Ω(n2) updates.

3.2 Weak Hierarchical Spanner

Our approach is to extend a spanner construction for kinetic data structures

developed by Gao et al. [GGN06], which they call a deformable spanner . This

kinetic structure is defined assuming a point set S in Rd for any fixed d, but the

construction generalizes easily to any metric space of constant doubling dimension.

The spanner is based on a hierarchical clustering involving a sparse subset of points,

called centers. To avoid confusion with the use of the term center as a cluster center,

henceforth we use the term node for a point in the discrete hierarchy, and the term

center when referring to the center of a disk in the solution to the k-center problem.

We will use the term point to refer to an element of S. Each node is associated with

a point of S. Because of the close relationship between nodes and the associated

points, we will sometimes blur this distinction, for example, by referring both to a

node u in the spanner and point u in S, or referring to the distance between two

nodes (by which we mean the distance between their associated points).

44

Recall the following properties of the deformable spanner [GGN06] as pre-

sented in Chapter 2.2:

• The hierarchy has a height O(logα).

• Any node in S0 is within distance 2i+1 of its ancestor in level Si.

Gao et al. [GGN06] showed that the hierarchy of discrete centers could be

used to define a spanner for the point set S. Given a parameter γ ≥ 1, called

the stretch factor , a γ-spanner for a point set is a graph where the points are the

vertices and the edge set has the property that the shortest path length in the

graph between any two points is at most γ times the metric distance between these

points. Given a user-supplied parameter c > 4, two nodes u and v on level i of the

hierarchy are said to be neighbors if they lie within distance c · 2i of each other. For

each pair of neighboring nodes in the hierarchy, an edge is created between their

associated points. Gao et al. show that the resulting graph is a spanner for S, and

they establish a relationship between the value of c and the resulting stretch factor.

Throughout, we will assume that c = 8, which implies that the resulting graph is a

5-spanner. Although we will use the term spanner when referring to our structure,

we will not be making use of spanner properties directly in our results.

The KDS presented in [GGN06] for the deformable spanner is shown to be

efficient, local, compact, and responsive. The algorithm maintains four types of

certificates: parent-child certificates, edge certificates, separation certificates, and

potential neighbor certificates. We will use these same certificates in our algorithm,

but with different update rules.

45

There is one additional difference between our structure and that of Gao et

al. In order to obtain our stronger approximation bounds, we will need to make a

number of copies of this structure, each with slightly different parameter settings.

The number of copies, which depends on the approximation parameter ε, will be

denoted by s(ε), or simply s whenever ε is clear from context. Its value will be given

in the next section. Recall that the ith level of the hierarchy of discrete centers is

naturally associated with the distance 2i (both as the covering radius and as the

separation distance between nodes). The lowest level of the hierarchy is associated

with the distance 20 = 1, which we call the base distance of the hierarchy. Each copy

in our structure will employ a different base distance. In particular, for 0 ≤ p < s,

let bp = (1 + p
s
). Observe that 1 ≤ bp < 2. In our structure, the ith level of the

pth spanner copy, denoted Si(p), will be associated with the distance bp2
i. The

neighbors of a node are defined to be those nodes within distance c · bp2i, rather

than c · 2i.

To simplify our algorithm presentations, unless otherwise stated, we will as-

sume that p = 0, and so bp = 1. There is no loss of generality in doing so, because

an equivalent way of viewing the variation in the base distance is to imagine that

distances have been scaled. In particular, when dealing with the pth copy, imagine

that all distances have divided by bp, and the hierarchy is then constructed on the

scaled points using the default base distance of 1.

Since the lowest level of the hierarchy, S0 is required to satisfy the requirement

that the distance between any two points is at least 20bp, it will be useful to assume

that distances have been scaled uniformly so that dmin = 2.

46

3.3 Robust K-Center Algorithm

Gao et al. [GGN06] gave an 8-approximation for the non-robust discrete ver-

sion of the kinetic k-center problem (for arbitrary k). In Section 3.5 we improve

this to a (4 + ε)-approximation for arbitrary k. In this section we present a (3 + ε)-

approximation algorithm for the robust discrete version of this problem and a (4+ε)-

approximation algorithm for the robust absolute version, both for constant k. Recall

that the non-robust version is a special case of the robust version (by setting t = 1),

so these algorithms also apply to the non-robust case.

3.3.1 Intuitive Explanation

For the sake of intuition regarding some of the more complex technical elements

of our algorithm we first present the algorithm by Charikar et al. [CKMN01] for the

static robust discrete k-center problem, which is the basis for our algorithm, and

we explain why it cannot be applied directly in the kinetic context. Henceforth we

refer to it as the expanded-greedy algorithm.

The algorithm is given as input a point set S of cardinality n, a number of

centers k, and a robustness threshold t. Radius values are chosen in a parametric

search so that all potential optimal values are considered. For a given target radius

r and for each point v ∈ S, we define the greedy disk Gv to be a disk of radius

r centered at v, and the expanded disk Ev to be the disk of radius 3r centered

at v. (We sometimes let Gv and Ev represent the geometric disk and sometimes

the subset of S contained within the disk. It will be clear from context which

47

interpretation is being used.) Initially all the points of S are labeled as uncovered.

The algorithm repeatedly picks the node v such that the greedy disk Gv contains

the most uncovered points, and it then marks all points within the expanded disk

Ev as covered. If after k iterations it succeeds in covering at least dtne points, it

returns successfully, and otherwise it fails. The algorithm is presented in Figure 3.1.

Figure 3.1: expanded-greedy(S, k, t, r)

n← |S|

Cr ← ∅ (Cr will hold the set of k centers being created for radius r)

V ← S (V holds the set of candidate centers)

for each v ∈ V

construct Gv and Ev and compute count |Gv| of uncovered points in S

within distance r of v

for j = 1 to k, let vj be the v ∈ V with largest |Gv|

add vj to Cr and mark all points in Ev as covered

for all v ∈ V , update |Gv|

if at least dtne points are covered, return Cr, and otherwise return “failure”

Figure 3.1: An overview of the expanded-greedy algorithm [CKMN01] for a single

radius value r.

The analysis of this algorithm’s approximation bound (which will be presented

later in Section 3.3.3) uses a charging argument, where each point covered by an

optimal disk is charged either to the expanded disk that covers it or to a non-

overlapping greedy disk [CKMN01]. The proof relies on two main points. First,

greediness implies that any optimal disk that does not overlap any greedy disk

48

cannot cover more points than any greedy disk. Second, if an optimal disk does

overlap some greedy disk Gv, then the expanded disk Ev covers all the points of this

optimal disk. This implies that optimal disks cannot be repeatedly “damaged” by

greedy disks.

To better motivate our kinetic algorithm, it will be helpful to first consider

a very simple static algorithm, which does not achieve the desired approximation

bound, but we will then show how to improve it. This initial algorithm applies the

expanded-greedy algorithm to individual levels of the discrete hierarchy described in

Section 3.2. It starts at the highest level of the spanner and works down. For each

level i, it runs the expanded-greedy algorithm with radius r = 2i, considering just

the nodes at this level as possible centers. It returns the set of centers associated

with the lowest level that succeeds in covering at least dtne points.

There are, however, some assumptions inherent to the expanded-greedy algo-

rithm that do not hold for this simple static algorithm. Let us consider each of these

assumptions and our approach for dealing with them.

All important radii will be considered.

The proof of the expanded-greedy algorithm relies on the possibility for the

algorithm to pick a node and cover all points within the optimal radius of that node.

However, in this initial algorithm, if the optimal radius is slightly larger than 2i then

our algorithm would be forced to choose the centers at the next higher level, nearly

doubling the radius value.

49

As mentioned at the end of Section 3.2, we solve this problem by creating mul-

tiple spanners with base distances that vary, thus partitioning the interval between

2i and 2i+1 into O(1/ε) subintervals (see Section 3.4). The algorithm is then applied

to all spanners, and the best result over all is chosen.

All points in S are candidate centers.

Our simple static algorithm considers only nodes in level i as possible centers,

and so points of S that do not reside on level i are excluded from consideration. If

some of these excluded centers are in the optimal solution, then the algorithm might

need to substitute a node at level i at distance up to 2i+1 from an optimal center,

which would require the need for a larger radius.

It would be unacceptably slow in the kinetic context to consider all the points

of S. Our solution instead is to take candidate centers from level i − l − 1, for

a suitably chosen l (whose value will depend on ε). We will show that, for each

optimal center, there is at least one candidate point that is close enough to enable

us to obtain our approximation bounds. We are now able to cover all of the points

covered by an optimal solution since the optimal center is a descendant of some

center in this lower level.

|Gv| and |Ev| are known exactly.

For the static case, the algorithm of Charikar et al. [CKMN01] accurately

counts the number of points within the greedy and expanded radii of each node.

50

However, maintaining these counts in a kinetic context would require keeping cer-

tificates between each point in S and all potential covering centers. This would

increase the compactness and locality complexities (presented later in Section 3.4.3)

by an unacceptable amount.

The hierarchical spanner structure allows us to count the number of points in

a fuzzy greedy disk in which all points within some inner distance are guaranteed to

be counted and no points outside of some outer distance are counted. We call this

range sketching . Due to fuzziness, some of the counted points may lie outside the

greedy radius, but we can increase the expanded radius slightly so that any optimal

disks affected by this fuzziness are still fully covered by the expanded disk.

3.3.2 Preconditions

In this section we describe the data that we maintain in our kinetic algorithm

in order to produce an approximate solution to the robust k-center problem. It will

simplify the presentation to assume for now that the points are static and rely on

the description of the kinetic data structure in Section 3.4 for proof that these values

are maintained correctly in the kinetic context.

Recall that our construction involves multiple copies of the spanner using

various base distances. From the real parameter ε > 0 we derive two additional

integer parameters s(ε) = d10/εe and l(ε) = 4−blog2 εc (abbreviated respectively as

s and l whenever ε is clear). These values will be justified in the analysis appearing

in the proof of Theorem 4.2. The value s represents the number of spanners we

51

maintain, and l determines the number of levels of the hierarchy that we will descend

at each step of the algorithm in order to find candidate centers. Observe that

s = O(1/ε) and l = log2(1/ε) +O(1).

Our algorithm depends on a number of radius values, each of which is a func-

tion of the level i, the spanner copy 0 ≤ p < s(ε), and l(ε). Given ε, i, and p, we

define the greedy radius and the expanded radius to be, respectively

gi(ε, p) = 2i
(

1 +
p

s

)
(1 + 3 · 2−l) and ei(ε, p) = 3gi(ε, p).

We also define two slightly smaller radii

g−i (ε, p) = 2i
(

1 +
p

s

)
(1 + 2−l) and e−i (ε, p) = 3g−i (ε, p).

When ε and p are clear from context, we abbreviate the values as gi, ei, g
−
i , and e−i ,

respectively. Given the important role of level i− l − 1 in our constructions, when

l is clear from context, we define i− = max(0, i − l − 1), and then use i− in these

contexts.

Our algorithm maintains the following information:

• For each node u at level i of the spanner, we maintain:

– The point of S associated with u, and conversely the nodes associated

with each point of S.

– The parent, children, and neighbors of u.

– The number of points of S that are descendants of u.

• For each node u at level i− of the spanner, we maintain:

52

– The number of points lying approximately within distance gi of u.

– The number of points lying approximately within distance ei of u.

(The sense of approximation will be defined formally in Section 3.3.3.)

• For each level i in the discrete hierarchy we maintain:

– A priority queue associated with level i storing the nodes of Si− ordered

by the counts of points within distance gi (approximately) as described

above. (The use of this priority queue will be clarified in Section 3.4.)

3.3.3 The Discrete Problem

Recall that our algorithm takes as input the set S of n points and additional

parameters ε (approximation parameter), k (number of centers), and t (robustness

threshold). Also recall that α denotes S’s aspect ratio bound. The algorithm makes

use of two parameters s and l, which are both functions of ε. It returns a set of

k centers chosen from S for a (3 + ε)-approximation of the optimal solution to the

kinetic, robust k-center problem.

Algorithm Overview

The algorithm is applied to all s spanners in our structure. For each spanner,

it applies a binary search over its levels, to determine the smallest covering radius.

At each level i, the k best centers for that level are calculated using the per-level

subroutine described later in this section. If this algorithm returns in failure (mean-

ing that it failed to cover at least dtne points of S), the binary search continues by

53

considering higher levels of the spanner (larger covering radii); otherwise, it contin-

ues to search through the lower levels (smaller radii). On termination of the binary

search, the k centers resulting from the search are stored as representatives for that

spanner. The k centers with minimum radius ei out of all s spanners are output as

the final solution.

Range Sketching

In order to maintain the counts described as necessary preconditions, we need

to efficiently count the number of points of S within a fuzzy disk, which we call a

range-sketch query . We are given a pair of concentric disks (B−, B), where B− ⊆ B,

and returns a count including all points within B− and no points outside of B

[dFM10]. Given a node v at level i−, let Gv and G−v denote the disks centered at v

of radii gi and g−i , respectively, and let Ev and E−v denote the disks centered at v

of radii ei and e−i , respectively. In our algorithm we will apply range-sketch queries

of two types, (G−v , Gv) and (E−v , Ev). The answer to the query (B−, B) will be

represented as a collection of spanner nodes, all from the same level of the spanner,

where the desired count is the total number of points descended from these nodes.

This collection of nodes will be denoted by µ(B). See Figure 3.2 for an illustration.

We answer a range-sketch query by first identifying an easily computable su-

perset of nodes covering the query region, and then pruning this to form the desired

set of nodes. To determine this superset of µ(Gv) (or µ(Ev)) we first develop the

following lemmas. Recall from Section 3.2 the concept of a node’s neighbors, and

54

Figure 3.2: Example range-sketch query

Gv

G−v

v

Figure 3.2: For v ∈ Si− the range-sketch query returns µ(Gv), all the nodes of Si−

that lie within G−v and no nodes with any descendants that lie outside of Gv. These

nodes are circled and disks are shaded. The points drawn as “×” are in D(µ(Gv))

and are counted for the priority queue. The dashed circle has radius (g−i + gi)/2.

let c = 8 denote the parameter used in the definition. More formally, given a subset

U of nodes at some level of the spanner, let

N(U) =
⋃
u∈U

({u} ∪ neighbors(u)) .

Given a node v and h ≥ 0, we define its h-fold neighbor set to be:

N (h)(v) =

{v} if h = 0,

N(N (h−1)(v)) otherwise.

Given a set of nodes U , let D(U) denote the set of descendants of those nodes, and

let D(h)(v) =
⋃
u∈N(h)(v) D(u).

Lemma 3.1. For any node v in Si and any h ≥ 1, all the points of S that lie within

distance h · 2i+3 − 2i+1 of v are in D(h)(v).

Proof. Under our assumption that c = 8, N(v) contains all the nodes in level i that

are within distance c · 2i = 2i+3 of v. (Recall that we consider the case p = 0.) By

55

induction, N (h)(v) contains all the nodes in level i that lie within distance h · 2i+3 of

v, and thus, any node u in level i that is not in this set is at distance greater than

h ·2i+3 from v. Recall that, from basic spanner properties, all of u’s descendants are

within distance 2i+1 of u. It follows that D(h)(v) contains all the points of S within

distance h · 2i+3 − 2i+1 of v.

The above lemma provides a way to determine a set of nodes that cover all

the points of S lying within a given distance of a given node. Using this, we can

identify a set of nodes at level i− whose descendants contain a superset of the points

for the range-sketch queries of interest to us.

Lemma 3.2. Let h(m) = m(2l−2 + 1). Then for any node v in Si−:

(i) The descendants of Nh(1)(v) contain all points within distance gi of v.

(ii) The descendants of Nh(3)(v) contain all points within distance ei of v.

(iii) The descendants of Nh(4)(v) contain all points within distance ei + gi of v.

Proof. By straightforward manipulations (and under our assumption that p = 0),

each distance can be rewritten as follows:

(i) gi = 2i(1 + 3 · 2−l) = (2l−2 + 1)2(i−+3) − 2(i−+1)

(ii) ei = 3 · 2i(1 + 3 · 2−l) < 3(2l−2 + 1)2(i−+3) − 2(i−+1)

(iii) ei + gi = 4 · 2i(1 + 3 · 2−l) < 4(2l−2 + 1)2(i−+3) − 2(i−+1)

The proof follows from Lemma 3.1 applied at level i−.

56

We will apply Lemma 3.2 as a subroutine in our range-sketching procedure.

Using the lemma, we first identify a set of nodes whose descendants provide a

superset of the points that might contribute to the query result (depending on the

radius of interest, gi, ei, or gi + ei), and we then prune this set by eliminating

those nodes whose covering disk lies entirely outside the inner disk. To see how to

perform this pruning, recall that if u is a node at level i−, its descendants all lie

within distance 2(i−+1) = 2i−l of u. (Note that if i− = 0, then the only descendant

is u itself). Thus, if ‖uv‖ > (g−i + gi)/2, then (under our assumption that p = 0)

it is easy to verify (by the definitions of gi and g−i) that every descendant u′ of u

satisfies

‖u′v‖ >
g−i + gi

2
− 2i−l = g−i +

gi − g−i
2

− 2i−l = g−i ,

and so u′ may be omitted from the range-sketch result. Conversely, if ‖uv‖ ≤

(g−i +gi)/2, then it is easy to verify that every descendant u′ of u satisfies ‖u′v‖ ≤ gi,

and so u′ may contribute to the range-sketch result. Given this observation, the code

is given in Figure 3.3 for the special case of the greedy disk Gv. It returns a set

µ(Gv) of nodes whose descendants satisfy the requirements of the range sketch. The

desired count is the sum of the numbers of descendants of these nodes, |D(µ(Gv))|.

The procedure returns both the set of nodes and the sum.

Recall from our earlier description of the expanded-greedy algorithm, that

whenever a center v is added to the solution at level i, the points lying within the

expanded disk Ev are marked as covered. In a kinetic setting it is too expensive

to mark these points explicitly. Our approach instead will be to modify the counts

57

Figure 3.3: range-sketchG(node v, level i)

sum← 0

U ← result of Lemma 3.2 part (i) applied to

v

for each u ∈ U

if ‖uv‖ > g−i +gi

2
then U ← U \ u

else sum← sum+ |D(u)|

return (U, sum)

Figure 3.3: The range-sketch and counting subroutine for the µ(Gv) query. To

answer the µ(Ev) query, all references to µ(Gv) change to µ(Ev), g
−
i and gi to e−i

and ei respectively, and Lemma 3.2 part (ii) is used. We will call the range-sketching

routine shown here range-sketchG and the one created through these substitutions

range-sketchE.

58

Figure 3.4: update-greedy-disks(node v, level i)

U ← result of Lemma 3.2 part (iii) applied to v

(µ(Ev), |Ev|)← range-sketchE(v, i)

for each u ∈ U

if ‖uv‖ ≤ ei + gi

(µ(Gu), |Gu|)← range-sketchG(u, i)

for each w ∈ µ(Ev)

if w is unmarked and w ∈ µ(Gu)

|Gu| ← |Gu| − |D(w)|

update u’s position in the priority queue

Figure 3.4: Subroutine to update greedy disk counts that calls the range-sketch

subroutine shown in Figure 3.3.

associated with each greedy disk that overlaps Ev. In particular, we apply range

sketching to determine the nodes u in level i− whose greedy disk Gu overlaps Ev,

and for each unmarked node w in their common intersection, we decrease |Gu| by

the weight D(w). The procedure is given in Figure 3.4. To prevent nodes from

being counted twice, we mark all these nodes w after Ev has been processed (see

Figure 3.5).

Main Subroutine and Analysis

We now have the tools needed to introduce the main subroutine for the al-

gorithm. Recall that the input consists of the point set S and parameters k, t,

ε. The quantities s and l depend on ε and represent the number of spanners and

59

the number of levels of resolution, respectively. The current spanner is indexed by

0 ≤ p < s, and the current level of the discrete hierarchy is i. The per-level subrou-

tine (presented in Figure 3.5) calculates the candidate list of k centers for a given

spanner p and level i. It is called from the algorithm overview presented earlier.

Figure 3.5: per-level-subroutine(S, k, t, ε, p, level i)

n← |S|

Cp,i ← ∅ (Cp,i = {k centers being created for spanner p and level i})

V ← Si−(p) (V = {candidate centers}, Si−(p) = {level i− of spanner p})

for each v ∈ V

(µ(Gv), |Gv|)← range-sketchG(v, i)

(µ(Ev), |Ev|)← range-sketchE(v, i)

for j = 1 to k

Let vj be the v ∈ V with the largest |Gv|

Cp,i ← Cp,i ∪ {vj}

update-greedy-disks(vj, i)

for each uncovered w ∈ µ(Ev), mark w as “covered”

if at least dtne points are covered return (Cp,i, ei) otherwise return “failure.”

Figure 3.5: The per-level subroutine for spanner p and level i of the kinetic robust

k-center algorithm. This subroutine calls the range-sketch and update-greedy-disk

subroutines shown in Figures 3.3 and 3.4 respectively.

Before giving the kinetic version of the algorithm, we first describe the static

version, and we focus on just one stage of the algorithm. In the static context this

algorithm requires preprocessing to create the priority queue and perform range

sketching to determine initial counts for Gv and Ev in all levels of all spanners.

60

We comment that this can be done in time O((1/ε)dn log n logα) since there are

n points, priority queue insertions take time O(log n), centers are calculated for

O(logα) levels, and range sketching takes time O(1/εd) as shown by the following

lemma.

Lemma 3.3. Range sketch queries for level i involving any of the distances gi, ei

or gi + ei can be answered in time O(1/εd).

Proof. The running time of a range-sketch query for a node v is dominated by the

time needed to compute the set U = Nh(m)(v) of nodes at level i− identified by

Lemma 3.2. By Lemma 3.1, the distance from v to any of these nodes is at most

h(4)2(i−+3) − 2(i−+1) ≤ 4(2l−2 + 1)2(i−+3) ≤ 16 · 2(i−+l).

Recall that i− = max(0, i − l − 1). If i− = 0, the distance to any of the identified

nodes is O(2l). If i− = i− l − 1, the distance is O(2i).

By definition of the hierarchy, the nodes of level i− are separated from each

other by a distance of at least 2i
−

. By a standard packing argument, this implies

that the number of such nodes within any disk of radius r is at most O((1+r/2i
−

)d),

where d is the dimension. If i− = 0, it follows that the number of nodes identified

in Lemma 3.2 is O((1 + 2l/20)d). On the other hand, if i− = i− l− 1, the number of

nodes is O((1 + 2i/2i−l−1)d). In either case, the number of nodes is clearly O(2l·d).

Since l = log2(1/ε) +O(1), it follows that the number of nodes is O(1/εd).

The nodes of U are determined by computing the h(m)-fold neighbor set of

v. We can do this by applying h(m) levels of a breadth-first search to the graph

of neighbors. The time to do this is proportional to the product of the number of

61

nodes visited and their degrees. Gao et al. [GGN06] show that each node has degree

at most (1 + 2c)d − 1. By our assumptions that c = 8 and d is fixed, this is O(1).

Thus, the total range-sketch query time is proportional to |U |, which is O(1/εd).

Theorem 3.1. After preprocessing has completed, our algorithm takes time

O(k(log n log logα)/ε2d) per spanner, which is O((log n log logα)/ε2d) under our as-

sumption that k is a constant.

Proof. We first show that, for a single level of a single spanner, the per-level subrou-

tine takes time O(k(log n)/ε2d). To see this, observe that it performs k iterations.

During each iteration, it updates the counts for O(1/εd) greedy disks (those that

overlap with disk Ej) based on the O(1/εd) nodes in level i− that are contained in

each greedy disk. Each update also involves adjusting the position of an entry in a

priority queue holding at most n points, which can be done in O(log n) time.

This per-level subroutine is invoked O(log logα) times per spanner, since there

are O(logα) levels in the discrete hierarchy, over which the binary search is per-

formed to determine the best radius. Thus, the total time required to update any

one spanner is O(k(log n log logα)/ε2d). Since k is a constant, our algorithm takes

time O((log n log logα)/ε2d).

We will now establish the approximation bound of 3 + ε.

Theorem 3.2. Let ropt be the optimal radius for the discrete robust k-center solution

for S, and let rapx be the radius found by our algorithm. Then for any 0 < ε ≤ 1,

we have rapx ≤ (3 + ε)ropt.

62

Proof. Let v1, . . . , vk denote the k optimal centers. We may express the optimal

radius value, ropt, as 2i + x for some integer i and 0 ≤ x < 2i. Let p = dsx/2ie. If

p = s, set i ← i + 1 and p = 0 (effectively rounding up to the next spanner copy).

Clearly, 0 ≤ p < s, and p−1
s

2i < x ≤ p
s
2i.

We first show that it is possible, given the information we maintain and the

algorithm we use, for us to cover as many points as are covered by the optimal

solution. For 1 ≤ j ≤ k, let Oj denote the optimal disk of radius ropt centered at

vj. Let uj denote the ancestor of vj in level i−. (If i− = 0, then uj = vj.) By the

basic properties of the discrete hierarchy we have

‖ujvj‖ ≤ 2(i−+1) ≤ 2(i−l).

The node uj will be considered by our algorithm (during the processing of spanner

copy p and level i). Let G−j denote the disk of radius g−i (ε, p) centered at uj. We

assert that every point lying within Oj will be included in the range-sketch count

for uj. To see this, let w be a point of S lying within Oj, that is, ‖vjw‖ ≤ ropt. By

the triangle inequality we have

‖ujw‖ ≤ ‖ujvj‖+ ‖vjw‖ ≤ 2(i−l) + ropt < 2(i−l) +
(

2i + 2i
p

s

)
= 2i

(
2−l +

(
1 +

p

s

))
≤ 2i

(
1 +

p

s

)
(1 + 2−l)

= g−i (ε, p).

Therefore w lies within G−j , the inner radius for the range-sketch query, and so it

must be included among the points counted in the range-sketch query for uj. In

summary, for each optimal disk Oj, there is a point uj at level i− of spanner copy p

whose range sketch covers a superset of S ∩Oj.

63

To establish the approximation bound, let u1, . . . , uk denote the nodes chosen

by our algorithm when run at level i of spanner copy p. (These are generally different

from the uj’s described in the previous paragraph.) Let Gj and Ej denote the disks

centered at uj of radii gi(ε, p) and ei(ε, p), respectively. We will show that the

expanded disks centered at these points will cover at least as many points as the

optimal solution, which is as least dtne. Since the algorithm returns the smallest

expanded radius that (approximately) covers at least dtne points, this implies that

rapx ≤ ei(ε, p).

Given a disk D, let |D| denote the number of points of S contained within

it. We will show that, for 0 ≤ j ≤ k, |O1 ∪ . . . ∪ Oj| ≤ |E1 ∪ . . . ∪ Ej|. Our

proof is similar to that of Charikar et al. [CKMN01], and is based on an argument

that charges each point covered in the optimal solution to a point covered by the

solution produced by our algorithm. The proof proceeds by induction on j. The

basis case is trivial, since for j = 0, both sets are empty. Assuming by induction

that |O1 ∪ . . . ∪Oj−1| ≤ |E1 ∪ . . . ∪Ej−1|, we consider what happens after the next

center uj is added to the approximate solution. We consider two cases:

• If Gj intersects any of the k−(j−1) remaining optimal disks, define Oj be any

such optimal disk. Any point w of Oj is within distance gi(ε, p)+2ropt of uj. It

is easy to verify that ropt ≤ gi(ε, p), and therefore ‖ujw‖ ≤ 3gi(ε, p) = ei(ε, p).

Thus, Ej covers all the points of Oj. We charge each point in Oj to itself.

• If Gj does not intersect any of the remaining Oj, let Oj be the remaining

optimal disk covering the greatest number of points of S. By our earlier

64

remarks, there exists a node in level i− whose range-sketch count includes

all the points of Oj. Since Gj was chosen greedily to maximize the number

of unmarked points it covers, it follows that the number of unmarked points

covered by Gj is at least |Oj|. We charge each point in Oj to an unmarked

point in Gj.

Each point that is charged is charged either to itself or to some point in a

greedy disk Gj that is disjoint from all remaining optimal disks, and therefore, each

point is charged at most once. It follows that |O1 ∪ . . . ∪Ok| ≤ |E1 ∪ . . . ∪ Ek|.

To complete the analysis of the approximation bound, it suffices to show that

rapx/ropt ≤ 3 + ε. As observed earlier, we have

rapx ≤ ei(ε, p) and ropt = 2i + x > 2i
(

1 +
p− 1

s

)
.

Thus, we have

rapx

ropt

<
ei(ε, p)

2i
(
1 + p−1

s

) =
3 · 2i (1 + p

s

)
(1 + 3 · 2−l)

2i
(
1 + p−1

s

)
= 3

(
1 +

1

s+ p− 1

)
(1 + 3 · 2−l) ≤ 3

(
1 +

1

s− 1

)
(1 + 3 · 2−l).

Under our assumptions that s = d10/εe, l = 4−blog2 εc, and ε ≤ 1, it follows easily

that s− 1 ≥ 9/ε, and 3 · 2−l ≤ 3ε/16 ≤ ε/5. Therefore, we have

rapx

ropt

< 3
(

1 +
ε

9

)(
1 +

ε

5

)
≤ 3

(
1 +

ε

3

)
= 3 + ε,

which completes the proof.

The assumption that ε ≤ 1 in the statement of the theorem is a technicality.

The analysis may be modified to work for any constant value of ε.

65

0 1 4

0 δ 10 10 + δ10− δ4− δ 4

2 10

2− δ 2

5 6

Figure 3.6: An example for which our algorithm gives an approximation ratio of

3− ε, where k = 2 and dtne = 11.

3.3.3.1 Tightness of the Approximation Ratio

In this section, we present an example that demonstrates that our (3 + ε)-

approximation ratio for the discrete k-center problem is nearly tight. In particular,

given any sufficiently small ε > 0, we shall show that our algorithm achieves an

approximation ratio of 3 − ε on this example. Let δ = ε/6, and consider the set

of 14 points illustrated in Figure 3.6. This point set consists of a collection of nine

clusters placed on the real line, where each cluster contains from one to four points,

each lying within distance δ of some integer point. Let k = 2 and dtne = 11. It is

easy to verify that the optimal radius is ropt = 1 + δ, which is achieved by placing

centers at positions 1 and 5, so that the two disks centered at these points cover the

7 + 4 = 11 points clustered about {0, 1, 2} and {4, 5, 6}, respectively.

We will establish our bounds under the most favorable assumptions for the

approximation algorithm. In particular, we assume that the approximation algo-

rithm is free to select any point as a candidate center (not just the nodes in level

66

i−). We assume that the base distance for the hierarchy of discrete centers has been

chosen so that any desired radius arises as the value of the greedy radius, g−i (ε, p),

for some level i of some spanner copy p. Finally, we assume that the counts returned

by range sketching algorithm are exact. Thus, relaxing any of these restrictions in

our algorithm will not significantly affect the tightness of the approximation bound.

We assert that, even under these favorable assumptions, rapx ≥ 3(1 − δ). To

see this, suppose not. Letting p and i denote, respectively, the spanner copy and

level that produce this value, we have ei(ε, p) = rapx < 3(1− δ). For all sufficiently

small δ, this is less than 4−2δ. This implies that each expanded disk covers at most

the single cluster containing its center and the clusters about the three consecutive

integer points on either side of it. We also have

g−i (ε, p) < gi(ε, p) =
ei(ε, p)

3
< 1− δ.

Since two points from different clusters are separated by a distance of at least 1− δ,

each greedy disk covers only a single cluster. Since the cluster near 0 has the most

points (four), some point of this cluster will be chosen first. The expanded disk

centered here covers only the seven points in the clusters near 0, 1, and 2. The next

center to be chosen is the cluster near 10 having three points. The expanded disk

is not large enough to include any other points. Thus, the algorithm succeeds in

covering only 7 + 3 = 10 points, and therefore it fails.

Since rapx ≥ 3(1− δ), we see the that approximation ratio is

rapx

ropt

≥ 3(1− δ)
1 + δ

= 3− 6δ

1 + δ
≥ 3− 6δ ≥ 3− ε,

as desired.

67

3.3.4 The Absolute Problem

Recall that in the absolute formulation the centers may be any point in space.

In this section we present a (4+ε)-approximation algorithm for the absolute, robust

k-center problem. The algorithm is the same as for the discrete problem, except that

we modify the values of the radii upon which the algorithm is based. In particular,

in place of gi(ε, p) and ei(ε, p), we define:

ĝi(ε, p) = 2gi and êi(ε, p) = 2ĝi(ε, p).

We also define two slightly smaller radii for the range-sketch queries:

ĝ−i (ε, p) = 2g−i (ε, p) and ê−i (ε, p) = 2ĝ−i (ε, p).

Since the values of these radii have increased, we also increase the values used in

various parts of Lemma 3.2 to h(2), h(4), and h(6), respectively. By a straightfor-

ward modification of the analysis of the approximation bound given in the proof of

Theorem 4.2 for the discrete case, we have the following.

Theorem 3.3. Let ropt be the optimal radius for the absolute robust k-center solution

for S, and let rapx be the radius found by this absolute algorithm. Then for any

0 < ε ≤ 1, we have rapx ≤ (4 + ε)ropt.

Proof. The proof of Theorem 4.2 makes use of two key facts about the greedy and

expanded disks. The first is that there exists a spanner copy p and a level i such

that, for any optimal disk, there exists a node u in level i− such that the associated

greedy disk G−u of radius g−i contains this optimal disk. In the absolute case, the

center of an optimal disk O may be at an arbitrary point of space, but by choosing

68

any point of S that is covered by O and centering a disk O′ of radius 2ropt at this

point, we see that O is contained within O′. Therefore, in our modified algorithm,

there exists a node u in level i− such that the greedy disk Ĝ−u of radius ĝ−i = 2g−i

contains O′, and hence contains O as well.

The second key fact used in our analysis of the discrete algorithm is that if

any optimal disk overlaps a greedy disk Gu, then the corresponding expanded disk

Eu contains the optimal disk. In the absolute case, if any optimal disk O overlaps

a greedy disk Ĝu, then every point of O lies within distance ĝi + 2ropt ≤ 2gi + 2gi =

4gi = êi of u. Therefore, O ⊆ Êu. Given these two key facts, the remainder of the

proof is the same as that of Theorem 4.2, but with an appropriate adjustment of

the specific values of s(ε) and l(ε) and with the fact that the expanded radius has

increased by a factor of êi/ei = 4/3.

3.4 Kinetic Spanner Maintenance and Quality

3.4.1 Certificates

The KDS algorithm of Gao, Guibas, and Nguyen [GGN06] for the deformable

spanner maintains four types of certificates. These are applied to all levels i of each

spanner. A parent-child certificate guarantees that a node in level i is within distance

2i+1 of its parent. An edge certificate guarantees that a pair of neighboring nodes in

level i lie within distance c · 2i of each other (where we choose c = 8). A separation

certificate guarantees that any two distinct neighboring nodes nodes in level i are

separated by a distance of at least 2i. A potential neighbor certificate guarantees

69

that two non-neighboring level-i nodes whose parents are neighbors are separated

by a distance of more than c · 2i. (Potential neighbor certificates are maintained

so that edge certificates can be easily maintained when points move closer to each

other [GGN06].)

Recall that in our data structure we have multiple spanners with differing

base distances bp, for 0 ≤ p < s(ε). As before, we present the algorithm only for

the simplest case of p = 0 and hence bp = 1, but the other cases are identical up

to a scaling of distances. Also recall that, for each level i, a set of k centers is

maintained as well as a priority queue. The entries in this priority queue are nodes

v in Si− , and the priority values are the counts of points within Gv (computed by

range-sketching).

Our update rules are identical to those given in [GGN06], with the following

additions to the update rules for parent-child, edge, and separation certificates. Each

rule is stated relative to some level i.

Addition of a spanner edge. Increment the counts for Gv and Ev for all neigh-

bors indicated by Lemma 3.2 parts (i) and (ii) that are affected by this edge

creation, and update the priority queue for level i appropriately.

Deletion of a spanner edge. Decrement the counts for Gv and Ev for all neigh-

bors indicated by Lemma 3.2 parts (i) and (ii) that are affected by this edge

deletion, and update the priority queue for level i appropriately.

Addition of parent-child certificate. Increment the descendant counts for all

new ancestor nodes and for all counts for Gv and Ev for neighbors indicated

70

by Lemma 3.2 parts (i) and (ii), and update the priority queue for level i

appropriately.

Failure of parent-child certificate. Decrement the counts for all previous an-

cestor nodes and for all counts for Gv and Ev for neighbors indicated by

Lemma 3.2 parts (i) and (ii), and update the priority queue for level i appro-

priately.

Whenever any count Gv changes for some node v, it may affect the k-center

solution. In particular, if v’s count increases and v is not a center, the k-center solu-

tion for that spanner is recalculated. Otherwise, the counts and priority queue are

updated, but the solution need not be recalculated. Similarly, if v’s count decreases

and v is a center, the k-center solution for that spanner is recalculated, otherwise

only the counts and priority queue are updated. In the cases when recalculating the

solution is necessary, our static algorithm is applied. Note that as time progresses

our KDS allows outlying points to become inliers and vice versa.

3.4.2 Preconditions

Maintaining the following preconditions ensures that the static algorithm will

be applicable at any time during the motion of the points. The preconditions needed

for all points are maintained by the certificates and update conditions given in the

original deformable spanner [GGN06].

For each level i in the discrete hierarchy, the following level-specific precondi-

tions are maintained. First, as in Section 3.3.2, we maintain a count for each node

71

in the discrete hierarchy of the number of points that are descendants of that node.

These counts are updated whenever parent-child certificates either are created or

fail. Also, for each node u at level i−, we maintain the counts of points lying approx-

imately within distances gi and ei, which are computed through the range-sketch

subroutine. For each level i, we maintain the counts of the points within the fuzzy

disks Gv associated with the nodes v on level i. These counts are stored in a priority

queue. Whenever such a count changes (in the procedure update-greedy-disks), the

priority queue is updated accordingly. If this update occurs during the course of

the algorithm because a center was chosen and nodes were marked as covered, these

changes are kept track of until all centers are chosen. The changes are undone in

reverse order, so that the counts accurately represent the current state as the points

continue to move. The preconditions for each level i are maintained according to

the update rules given in Section 3.4.1.

3.4.3 Quality

In order to assure the quality of the spanner, we must reason about compact-

ness, locality, efficiency, and responsiveness. Recall that n is the total number of

points, d the dimension, and α the user-supplied upper bound on the aspect ratio.

In this section we will show that compactness, locality, and efficiency are bounded by

O(n/εd+1), O((logα)/εd), and O(n2(logα)/ε) respectively, which match the bounds

given by Gao et al. [GGN06] up to a factor of s = O(1/ε). In addition, we will

establish a bound of O((log n logα)/ε2d) on responsiveness.

72

3.4.3.1 Compactness and Locality

Compactness and locality conditions ensure that maintaining certificates for

the kinetic data structure is not too costly by bounding the number of certificates.

Recall that compactness bounds the total number of certificates, and locality bounds

the number of certificates in which each point can participate. Since our data

structure consists of s = O(1/ε) copies of the spanner of [GGN06], it follows that

the compactness is larger than theirs by a factor of O(1/ε) and our locality is the

same. Thus we have the following.

Theorem 3.4. Our KDS satisfies compactness and locality with O(n/εd+1) total

certificates and O((logα)/εd) certificates per point.

3.4.3.2 Efficiency

The efficiency condition ensures that maintaining the kinetic data structure

is not too expensive by bounding the number of certificate failures that can occur.

This is compared to the number of required changes to the combinatorial structure

of the spanner to determine the efficiency of the KDS.

Theorem 3.5. Our KDS satisfies efficiency (with respect to the number of spanner

updates) with O(n2(logα)/ε) possible certificate maintenance events.

Proof. The deformable spanner of [GGN06] has O(n2 logα) possible maintenance

events because, under pseudo-algebraic motion, events only occur when the distance

between two points is at the boundary of some certificate on a given level i, namely

73

2i or c · 2i. Since there are O(logα) possible levels and 2n2 of these inter-point

distances, there are O(n2 logα) possible maintenance events [GGN06]. Recall that

there are s spanners that differ according to their base distances, but the bound

on the number of maintenance events per spanner remains the same, so the total

possible number of maintenance events increases by a factor of s = O(1/ε). Since

the spanner has not changed except for the base distance, the number of changes

required by the combinatorial structure of each spanner remains Ω(n2) [GGN06],

so any approach based on a spanner requires Ω(n2) changes. So the kinetic data

structure is efficient.

3.4.3.3 Responsiveness

The responsiveness condition ensures that maintaining the kinetic data struc-

ture is not too expensive by bounding the amount of time taken to repair each failed

certificate. Our spanner satisfies responsiveness with O((log n logα)/ε2d) time per

certificate update. This time is due to the possibility that a failure or addition

of a certificate could require the algorithm to be re-run and the possibility that

certificates may need to be updated on each level of a single spanner.

Theorem 3.6. Our KDS satisfies responsiveness with O((log n logα)/ε2d) time per

certificate update.

Proof. As shown in [GGN06], the certificates of each copy of the hierarchical spanner

can be updated in O(1) or O((logα)/εd) time depending on the specific certificate

that fails. In our case, the failure or addition of a certificate could require our

74

static algorithm to be re-run. When the priority queue is updated during the re-

running, a list of changes is maintained. After k centers for a level are chosen, the

priority queue is returned to its original state (the state assuming all points are

uncovered). Since the changes made are undone, this increases the running time

by only a constant factor. By Theorem 3.1, the solution can be recalculated in

time O(k(log n log logα)/ε2d). Given our assumption that k is a constant, this is

O((log n log logα)/ε2d).

The failure or addition of a certificate could also require points to be updated

for O(1/εd) nodes (see Lemma 3.3) on all O(logα) levels. Each such update may

induce a change to a priority queue entry, adding an additional factor of O(log n).

Thus, the total time to repair a failed certificate is O((log n logα)/εd). The overall

responsiveness is the maximum of these two bounds (recalculation and certificate

repair), which is bounded by O((log n logα)/ε2d), as desired.

3.5 Non-Robust Kinetic K-Center Algorithm

In this section we mention that by using our hierarchical spanner, it is pos-

sible to improve on the non-robust discrete k-center algorithm presented by Gao

et al. [GGN06]. That algorithm achieved a factor-8 approximation, and we will

improve this to a (4 + ε)-approximation (both for arbitrary k). Recall that, rather

than using a single spanner, we generate s(ε) = O(1/ε) spanners with differing base

distances. Our approach is to run the algorithm presented by Gao et al. on all

spanner copies and return the smallest radius over all these runs. The algorithm is

75

illustrated in Figure 3.7. The value of s is restricted in the proof of Theorem 3.7.

For proof of maintenance under motion, we refer the reader to the proof of a similar

algorithm given by Gao et al. [GGN06].

Theorem 3.7. Let ropt be the optimal radius for k-centers chosen from the input

points and rapx be the radius found by our non-robust kinetic k-center algorithm,

then rapx ≤ (4 + ε)ropt.

Proof. The algorithm chooses some Si on spanner p with associated radius 2i+1(1 +

p
s
), where Si has the minimum radius such that |Si| ≥ k. Since 2i+1(1 + p−1

s
) <

2i+1(1 + p
s
), |Si| > k on spanner p−1. So at least two points from Si are assigned to

the same center in the optimal solution. These points are separated by a distance

of at least 2i(1 + p−1
s

), so the optimal radius must be at least 2i−1(1 + p−1
s

). To

determine the approximation ratio we consider the ratio between ropt ≥ 2i−1(1+ p−1
s

)

and rapx ≤ 2i+1(1 + p
s
). Choosing s(ε) ≥ 2

ε
+ 1

2
results in a (4 + ε)-approximation

algorithm.

76

Figure 3.7: non-robust(S, k, ε, α)

for p = 0 to s− 1

for i = dlogαe down-to 0

if |Si(p)| > k

rp ← 2i+2(1 + p
s
)

Kp ← Si+1

while |Kp| < k add an arbitrary node of Si(p) to Kp

break out of inner loop

r ← minp rp

output (Kp, r), each point is serviced by its ancestor in Kp

Figure 3.7: The non-robust discrete kinetic k-center algorithm for arbitrary k. Recall

that Si(p) denotes the ith level of the pth spanner.

77

Chapter 4

A Sensor-Based Framework For
Kinetic Data Compression

In this chapter, we introduce a framework for storing and processing kinetic

data observed by sensor networks. These sensor networks generate vast quantities

of data, which motivates a significant need for data compression. We are given a

set of sensors, each of which continuously monitors some region of space. We are

interested in the kinetic data generated by a finite set of objects moving through

space, as observed by these sensors. Our model relies purely on sensor observa-

tions, and, unlike KDS, points are allowed to move freely and the model requires

no advance notification of motion plans. Sensor outputs are represented as random

processes, where nearby sensors may be statistically dependent. We model the lo-

cal nature of sensor networks by assuming that two sensor outputs are statistically

dependent only if the two sensors are among the k nearest neighbors of each other.

We present an algorithm for the lossless compression of the data produced by the

network. We show that, under the statistical dependence and locality assumptions

of our framework, asymptotically this compression algorithm encodes the data to

within a constant factor of the information-theoretic lower bound optimum dictated

by the joint entropy of the system. In order to justify our locality assumptions,

78

we provide a theoretical comparison with a variant of the kinetic data structures

framework. We prove that the storage size required by an optimal system operating

under our locality assumptions is on the order of the size required by our variant.

4.1 Introduction

In this chapter we consider the problem of how to compress the massive quan-

tities of data that are streamed from large sensor networks. Compression methods

can be broadly categorized as being either lossless (the original data is fully recov-

erable), or lossy (information may be lost through approximation). Because lossy

compression provides much higher compression rates, it is by far the more com-

monly studied approach in sensor networks. Our ultimate interest is in scientific

applications involving the monitoring of the motion of objects in space, where the

loss of any data may be harmful to the subsequent analysis. For this reason, we

focus on the less studied problem of lossless compression of sensor network data.

Virtually all lossless compression techniques that operate on a single stream (such

as Huffman coding [Huf52], arithmetic coding [Ris76], Lempel-Ziv [ZL77]) rely on

the statistical redundancy present in the data stream in order to achieve high com-

pression rates. In the context of sensor networks, this redundancy arises naturally

due to correlations in the outputs of sensors that are spatially close to each other.

As with existing methods for lossy compression [DKR06,GNSL09], our approach is

based on aggregating correlated streams and compressing these aggregated streams.

(More information on data compression can be found in Chapter 2.4.)

79

A significant amount of research to date has focused on the efficient collection

and processing of sensor network data within the network itself, for example, through

the minimization of power consumption or communication costs [CMZ07, CMY08,

SWP08]. (More information on sensor networks can be found in Chapter 2.3.) We fo-

cus on doing lossless compression on the data locally and then downloading it to tra-

ditional computer systems for analysis. Clustering the stationary sensors is a strat-

egy that has been previously used to improve the scalability as well as the energy and

communication efficiency of the sensor network [JN06]. Compressing the data before

transmitting additionally improves the communication efficiency of the network.

We are particularly interested in kinetic data, by which we mean data arising

from the observation of a discrete set of objects moving in time (as opposed to con-

tinuous phenomena such as temperature). We explore how best to store and process

these assembled data sets for the purposes of later efficient retrieval, visualization,

and statistical analysis of the information contained within them. The data sets gen-

erated by sensor networks have a number of spatial, temporal, and statistical proper-

ties that render them interesting for study. We assume that we do not get to choose

the sensor deployment based on object motion (as done in [NS08]), but instead use

sensors at given locations to observe the motion of a discrete set of objects over some

domain of interest. Thus, it is to be expected that the entities observed by one sensor

will also likely be observed by nearby sensors, albeit at a slightly different time. For

example, many of the vehicles driving by one traffic camera are likely to be observed

by nearby cameras, perhaps a short time later or earlier. If we assume that the data

can be modeled by a random process, it is reasonable to expect that a high degree of

80

statistical dependence exists between the data streams generated by nearby sensors.

If so, the information content of the assembled data will be significantly smaller than

the size of the raw data. In other words, the raw sensor streams, when considered in

aggregate, will contain a great deal of redundancy. Well-designed storage and pro-

cessing systems should capitalize on this redundancy to optimize space and process-

ing times. In this chapter we propose a statistical model of kinetic data as observed

by a collection of fixed sensors. We will present a method for the lossless compression

of the resulting data sets and will show that this method is within a constant factor

of the asymptotically optimal bit rate, subject to the assumptions of our model.

Although we address the problem of compression here, we are more generally

interested in the storage and processing of large data sets arising from sensor net-

works [DKR06, DKR07, SM06, Gui02, GTH08]. This will involve the retrieval and

statistical analysis of the information contained within them. In Chapter 5 we will

discuss this compression scheme under realistic assumptions (those presented here

are based on pure theoretical analyses) and in Chapter 6 we consider retrieval via

spatio-temporal range searching [FM10b]. Thus, we will discuss compression within

the broader context of a framework for processing large kinetic data sets arising

from a collection of fixed sensors. We feel that this framework provides a useful

context within which to design and analyze efficient data structures and algorithms

for kinetic sensor data.

The problem of processing kinetic data has been well studied in the field of

computational geometry in a standard computational setting [GJS96, Ata85, ST95,

ST96,BG99,Kah91]. A survey of practical and theoretical aspects of modeling mo-

81

tion can be found in [AGE+02]. Many of these apply in an online context and rely on

a priori information about point motion. The most successful of these frameworks

is the kinetic data structures (KDS) model proposed by Basch, Guibas, and Her-

shberger [BG99]. The basic entities in this framework are points in motion, where

the motion is expressed as piecewise algebraic flight plans. Geometric structures

are maintained through a set of boolean conditions, called certificates, and a set

of associated update rules. The efficiency of algorithms in this model is a function

of the number of certificates involved and the efficiency of processing them. In a

sensor context, moving data has been considered in relation to sensor placement

based on possible object trajectories modeled by a set of 3D curves over space and

time [NS08]. (More information about motion and kinetic data structures can be

found in Chapter 2.)

As valuable as KDS has been for developing theoretical analyses of point mo-

tion (see [Gui04] for a survey), it is unsuitable for many real-world contexts and for

theoretical problems that do not have locally determined properties. The require-

ments of algebraic point motion and advance knowledge of flight plans are either

inapplicable or infeasible in many scientific applications. Agarwal et al. [AGE+02]

identify fundamental directions that future research should pursue. Our work ad-

dresses four of these issues; unpredicted motion, motion-sensitivity, robustness, and

theoretical discrete models of motion. In our framework we will process a point set

without predicted knowledge and no matter its motion. Motion-sensitive algorithms

admit complexity analyses based on the underlying motion. Imagine a set of points

following a straight line or moving continuously in a circle; any algorithm calculat-

82

ing statistical information about such a point set should be more efficient than the

same algorithm operating on a set of randomly moving points. Our motion-sensitive

framework will pay a cost in efficiency based on the information content of the point

motion. Robustness is a quality of statistical estimators that allow outliers. Unlike

KDS, we will ignore point identities in favor of statistical properties; KDS focuses

on properties in relation to individual points. In the KDS model, a rearrangement of

points which maintained a global statistical property could trigger many certificate

failures despite the maintenance of the statistical property being calculated. For

example, two points which exactly switch position do not change the diameter of

the point set, but may cause multiple certificate failures. Through anonymization

of the points and discrete time sampling, our framework reduces the overhead in

these instances. Finally, Agarwal et al. note that most theoretical work relies on

continuous frameworks while applied work experimentally evaluates methods based

on discrete models. Our framework uses a discrete sampling model, but is still the-

oretically sound. In addition, the underlying goal which structures KDS operations

is maintenance of information into the future; we will process sensed data after the

fact, e.g., for efficient retrieval. For these problem types, our framework serves as

an alternative to the KDS model.

There has also been study of algorithms that involve the distributed online

processing of sensor-network data. One example is the continuous distributed model

described by Cormode et al. [CMZ07]. This model contains a set of sensors, which

each observe a stream of data describing the recent changes in local observations.

Each sensor may communicate with any other sensor or with a designated central

83

coordinator. Efficiency is typically expressed as a trade-off between communica-

tion complexity and accuracy. This framework has been successfully applied to

the maintenance of a number of statistics online [CMZ07,CMY08,BO03]. Another

example is the competitive online tracking algorithm of Yi and Zhang [YZ09], in

which a tracker-observer pair coordinate to monitor the motion of a moving point.

Again, complexity is measured by the amount of communication between the tracker

and the observer. The idea of the tracker and observer is reminiscent of an earlier

model for incremental motion by Mount et al. [MNP+04]. Unlike these models, our

framework applies in a traditional (non-distributed) computational setting.

Here is a high-level overview of our framework, which will be described in

greater detail in Section 4.2. We assume we are given a fixed set of sensors, which

are modeled as points in some metric space. (An approach based on metric spaces,

in contrast to standard Euclidean space, offers greater flexibility in how distances are

defined between objects. This is useful in wireless settings, where transmission dis-

tance may be a function of non-Euclidean considerations, such as topography and the

presence of buildings and other structures.) Each sensor is associated with a region

of space, which it monitors. The moving entities are modeled as points that move

over time. At regular time intervals, each sensor computes statistical information

about the points within its region, which are streamed as output. For the purposes

of this presentation, we assume that this information is simply an occupancy count

of the number of points that lie within the sensor’s region at the given time instant.

In other words, we follow the minimal assumptions made by Gandhi et al. [GKS08]

and do not rely on a sensor’s ability to accurately record distance, angle, etc.

84

As mentioned above, our objective is to compress this data in a lossless man-

ner by exploiting redundancy in the sensor streams. In order to establish formal

bounds on the quality of this compression, we assume (as is common in entropy

encoding) that the output of each sensor can be modeled as a stationary, ergodic

random process. We allow for statistical dependencies between the sensor streams.

Shannon’s source coding theorem implies that, in the limit, the minimum num-

ber of bits needed to encode the data is bounded from below by the normalized

joint entropy of the resulting system of random processes. There are known lossless

compression algorithms, such as Lempel-Ziv [ZL77], that achieve this lower bound

asymptotically. It would be utterly infeasible, however, to apply this observation en

masse to the entire joint system of all the sensor streams. Instead, we would like to

partition the streams into small subsets, and compress each subset independently.

The problem in our context is how to bound the loss of efficiency due to the par-

titioning process. In order to overcome this problem we need to impose limits on

the degree of statistical dependence among the sensors. Our approach is based on

a locality assumption. Given a parameter k, we say that a sensor system is k-local

if each sensor’s output is statistically dependent on only its k-nearest sensors.

The full contributions of this chapter are described in the following sections.

In Section 4.2, we introduce a new framework for the compression and analysis of

kinetic sensor data. In Section 4.3, we prove that any k-local system that resides in

a space of fixed dimension can be nicely partitioned in the manner described above,

so that joint compressions involve groups of at most k + 1 sensors. We show that

the final compression is within a factor c of the information-theoretic lower bound,

85

where c is independent of k, and depends only on the dimension of the space. In

Section 4.4, we justify our k-local model theoretically as compared to a variant of

the KDS model. We prove that the compressed data from our model takes space on

the order of the space used by the KDS variant.

4.2 Data Framework

In this section we present a formal model of the essential features of the sensor

networks to which our results will apply. Our main goal is that it realistically model

the data sets arising in typical wireless sensor-networks when observing kinetic data

while also allowing for a clean theoretical analysis. We assume a fixed set of S

sensors operating over a total time period of length T . The sensors are modeled as

points in some metric space. We may think of the space as Rd for some fixed d, but

our results apply in any metric space of bounded doubling dimension [KL04]. We

model the objects of our system as points moving continuously in this space, and

we make no assumptions a priori about the nature of this motion. Each sensor ob-

serves some region surrounding it. In general, our framework makes no assumptions

about the size, shape, or density of these regions, but additional assumptions may

be imposed later in special cases. The sensor regions need not be disjoint, nor do

they need to cover all the moving points at any given time.

Each sensor continually collects statistical information about the points lying

within its region, and it outputs this information at synchronized time steps. As

mentioned above, we assume throughout that this information is simply an occu-

86

pancy count of the number of points that lie within the region. (The assumption of

synchronization is mostly for the sake of convenience of notation. As we shall see,

our compression algorithm operates jointly on local groups of a fixed size, and hence

it is required only that the sensors of each group behave synchronously.)

As mentioned in the introduction, our framework is based on an information-

theoretic approach. Let us begin with a few basic definitions (see, e.g., [CT06]). We

assume that the sensor outputs can be modeled by a stationary, ergodic random

process. Since the streams are synchronized and the cardinality of the moving point

set is finite, we can think of the S sensor streams as a collection of S strings, each

of length T , over a finite alphabet. Letting lg denote the logarithm base-2, the en-

tropy of a discrete random variable X, denoted H(X), is defined to be −∑x px lg px,

where the sum is over the possible values x of X, and px is the probability of x.

Recall from Chapter 2.4 that we can generalize entropy to random processes

as follows. Given a stationary, ergodic random process X, consider the limit of the

entropy of arbitrarily long sequences of X, normalized by the sequence length. This

leads to the notion of normalized entropy , which is defined to be

H(X) = lim
T→∞

− 1

T

∑
x,|x|=T

px lg px,

where the sum is over sequences x of length T , and px denotes the probability of

this sequence. Normalized entropy considers not only the distribution of individual

characters, but the tendencies for certain patterns of characters to repeat over time.

We can also generalize the concept of entropy to collections of random vari-

ables. Given a sequence X = 〈X1, X2, . . . , XS〉 of (possibly statistically correlated)

87

random variables, the joint entropy is defined to be H(X) = −∑x px lg px, where

the sum is taken over all S-tuples x = 〈x1, x2, . . . , xS〉 of possible values, and px is

the probability of this joint outcome [CT06]. The generalization to normalized joint

entropy is straightforward. Normalized joint entropy further strengthens normalized

entropy by considering correlations and statistical dependencies between the various

streams.

In this chapter we are interested in the lossless compression of the joint sensor

stream. Shannon’s source coding theorem states that in the limit, as the length

of a stream of independent, identically distributed (i.i.d.) random variables goes

to infinity, the minimum number of required bits to allow lossless compression of

each character of the stream is equal to the entropy of the stream [Sha48]. In our

case, Shannon’s theorem implies that the optimum bit rate of a lossless encoding

of the joint sensor system cannot be less than the normalized joint entropy of the

system. Thus, the normalized joint entropy is the gold standard for the asymptotic

efficiency of any compression method. Henceforth, all references to “joint entropy”

and “entropy” should be understood to mean the normalized versions of each.

As mentioned above, joint compression of all the sensor streams is not feasi-

ble. Our approach will be to assume a limit on statistical dependencies among the

observed sensor outputs based on geometric locality. It is reasonable to expect that

the outputs of nearby sensors will exhibit a higher degree of statistical dependence

with each other than more distant ones. Although statistical dependence would be

expected to decrease gradually with increasing distance, in order to keep our model

as simple and clean as possible, we will assume that beyond some threshold, the

88

statistical dependence between sensors is so small that it may be treated as zero.

(We consider the more realistic version of this assumption in the following chapter.)

There are a number of natural ways to define such a threshold distance. One is

an absolute approach, which is given a threshold distance parameter r, and in which

it is assumed that any two sensors that lie at distance greater than r from each other

have statistically independent output streams. The second is a relative approach in

which an integer k is provided, and it is assumed that two sensor output streams are

statistically dependent only if each is among the k nearest sensors of the other. In

this chapter we will take the latter approach. One reason is that it adapts to the local

density of sensors. Another reason arises by observing that, in the absolute model,

all the sensors might lie within distance r of each other. This means that all the

sensors could be mutually statistically dependent, which would render optimal com-

pression intractable. On the other hand, if we deal with this by imposing the density

restriction that no sensor has more than some number, say k, sensors within distance

r, then the absolute approach reduces to a special case of the relative approach.

This locality restriction allows reasoning about sensor outputs in subsets. Pre-

vious restrictions of this form include the Lovász Local Lemma [EL75] which also

assumes dependence on at most k events. Particle simulations (often used to sim-

ulate physical objects for animation) based on smoothed particle hydrodynamics

have also used similar locality restrictions to determine which neighboring particles

impact each other. These calculations are made over densely sampled particles and

are based on a kernel function which determines the impact of one particle on an-

other. This frequently amounts to a cut-off distance after which we assume that

89

the particles are too far away to impact each other [APKG07]. For a survey on

smoothed particle hydrodynamics see [Mon05].

Formally, let P = {p1, p2, . . . , pS} denote the sensor positions. Given some

integer parameter k, we assume that each sensor’s output can be statistically de-

pendent on only its k nearest sensors. Since statistical dependence is a symmetric

relation, two sensors can exhibit dependence only if each is among the k nearest

neighbors of the other. More precisely, let NN k(i) denote the set of k closest sensors

to pi (not including sensor i itself). We say that two sensors i and j are mutu-

ally k-close if pi ∈ NN k(j) and pj ∈ NN k(i). A system of sensors is said to be

k-local if for any two sensors that are not mutually k-close, their observations are

statistically independent. (Thus, 0-locality means that the sensor observations are

mutually independent.) Let X = 〈X1, X2, . . . , XS〉 be a system of random streams

associated with by S sensors, and let H(X) denote its joint entropy. Given two

random processes X and Y , define the conditional entropy of X given Y to be

H(X | Y) = −
∑

x∈X,y∈Y

p(x, y) log p(y | x).

Note that H(X | Y) ≤ H(X), and if X and Y are statistically independent, then

H(X | Y) = H(X). By the chain rule for conditional entropy [CT06], we have

H(X) = H(X1)+H(X2 | X1)+. . .+H(Xi | X1, . . . , Xi−1)+. . .+H(XS | X1, . . . , XS−1).

Letting

Di(k) = {Xj : 1 ≤ j < i and sensors i and j are mutually k-close}

we define the k-local entropy , denoted Hk(X), to be
∑S

i=1H(Xi | Di(k)). Note

90

that H(X) ≤ Hk(X) and equality holds when k = S. By definition of k-locality,

H(Xi | X1, X2, . . . , Xi−1) = H(Xi | Dk(i)). By applying the chain rule for joint en-

tropy, we have the following easy consequence, which states that, under our locality

assumption, k-local entropy is the same as the joint entropy of the entire system.

Lemma 4.1. Given a k-local sensor system with set of observations X, H(X) =

Hk(X).

The assumption of statistical independence is rather strong, since two distant

sensor streams may be dependent simply because they exhibit a dependence with

a common external event, such as the weather or time of day. Presumably, such

dependencies would be shared by all sensors, and certainly by the k nearest neigh-

bors. The important aspect of independence is encapsulated in the above lemma,

since it indicates that, from the perspective of joint entropy, the k nearest neighbors

explain essentially all the dependence with the rest of the system. Although we as-

sume perfect statistical independence beyond the range of the kth nearest neighbor,

the practical impact of this assumption is that any dependencies that may exist

beyond this range have a negligible impact on the joint entropy of the system, and

hence a negligible impact on the degree of compressibility in the system.

One advantage of our characterization of mutually dependent sensor outputs is

that it naturally adapts to the distribution of sensors. It is not dependent on messy

metric quantities, such as the absolute distances between sensors or the degree of

overlap between sensed regions. Note, however, that our model can be applied in

contexts where absolute distances are meaningful. For example, consider a setting

91

in which each sensor monitors a region of radius r. Given two positive parameters

α and β, we assume that the number of sensors whose centers lie within any ball

of radius r is at most α, and the outputs of any two sensors can be statistically

dependent only if they are within distance βr of each other. Then, by a simple

packing argument, it follows that such a system is k-local for k = O(αβO(1)), in any

space of constant doubling dimension.

4.3 Compression Results

Before presenting the main result of this section, we present a lemma which

is combinatorially interesting in its own right. This partitioning lemma combined

with a compression algorithm allows us to compress the motion of points as recorded

by sensors to an encoding size which is c times the optimal, where c is an integral

constant to be specified in the proof of Lemma 4.2.

4.3.1 Partitioning Lemma

First, we present some definitions about properties of the static point set rep-

resenting sensor locations. Let rk(p) be the distance from some sensor at location

p to its kth nearest neighbor. Recall that points are mutually k-close if they are in

each other’s k nearest neighbors. We say that a point set P ∈ Rd is k-clusterable if

it can be partitioned into subsets Ci1, Ci2, . . . such that |Cij| ≤ k + 1 and if p and

q are mutually k-close then p and q are in the same subset of the partition. Intu-

itively, this means that naturally defined clusters in the set are separated enough so

92

that points within the same cluster are closer to each other than they are to points

outside of the cluster. The following lemma holds for all metrics with constant dou-

bling dimension, where these metrics are defined to limit to a constant the number

of balls that cover a ball with twice their radius [KL04]. Euclidean spaces are of

constant doubling dimension.

Lemma 4.2. In any doubling space there exists an integral constant c such that for

all integral k > 0 given any set P in the doubling space, P can be partitioned into

P1, P2, . . . , Pc such that for 1 ≤ i ≤ c, Pi is k-clusterable.

The partitioning algorithm which implements Lemma 4.2 is shown in Figure

4.1. It proceeds by iteratively finding the unmarked point p with minimum r = rk(p),

moving all points within r, henceforth called a cluster, to the current partition, and

marking all points within 3r of p. A new partition is created whenever all remaining

points have been marked. The marked points are used to create a buffer zone which

separates clusters so that all points are closer to points within their cluster than

they are to any other points in the partition. The algorithm’s inner loop creates

these clusters, and the outer loop creates the c partitions.

Proof. Each partition is k-clusterable since (by the marking process) for any cluster

with diameter 2r there are no points of this partition which are not members of

that cluster which are within distance 2r of a member of the cluster. So each cluster

consists of at most k + 1 points, each of whose k nearest neighbors are within the

cluster, i.e., are mutually k-close.

We will show that at most c partitions Pi are created by the partitioning al-

93

partition(point set P , k)

for all p ∈ P // Determine the k nearest neighbors and the radius

determine NN k(p) and rk(p) // of the k nearest neighbors ball based on the original

i = 1 // point set. These values do not change.

while P 6= ∅ // While unpartitioned points remain

unmarked(P) = P // unmark all remaining points.

Pi = ∅ // Create a new, empty partition.

while unmarked(P) 6= ∅ // While unmarked points remain

r = minp∈unmarked(P) rk(p) // find the point p with the minimum radius (r)

p′ = p ∈ P : r = rk(p) // nearest neighbor ball and add that point and

Pi = Pi ∪ {p ∈ P : ‖pp′‖ ≤ r} // all points within r to the new partition.

P = P \ {p ∈ P : ‖pp′‖ ≤ r} // Remove these points from P and mark

unmarked(P) = unmarked(P) \ {p ∈ unmarked(P) : ‖pp′‖ ≤ 3r}

increment i // points within 3r of p.

return {P1, P2, . . . , Pc} // Return the resulting partitions.

Figure 4.1: The partitioning algorithm which implements Lemma 4.2.

gorithm of Figure 4.1. We refer to each iteration of the outer while loop as a round.

First note that at the end of the first round all points are either marked or removed

from P . Each point that remains after the first round was marked by some point

during the first round. Consider some point p which is marked by the first round.

Let p′ be the point that marked p in round one, and let r = rk(p
′) be the radius

of NN k(p
′). (Note that for any p ∈ P , rk(p) is defined based on the original point

set.) The marked point p is within distance 3r of p′. Since there are k points within

94

distance r of p′, there are at least k points within distance 4r of p, so NN k(p) cannot

have a radius larger than 4r. Let M be the set of points that mark p in any round

i. Since nearest neighbor balls are chosen in increasing order of radius, no point q

with rk(q) greater than 4r can be in M , since p would have been chosen first. So

all points in M are within distance 3 · 4r = 12r of p.

We now show that points in M are r-sparse, i.e., are separated by at least

distance r. Since radii are chosen in increasing order and r = rk(p
′) has already

been chosen, any point q′ ∈ M must have rk(q
′) > r. In addition, since all points

in NN k(q
′) are removed, for all q′′ ∈M , ‖q′q′′‖ > r. Given a circle of radius R in a

doubling metric, it follows from a standard packing argument that any δ-sparse set

that lies entirely within a ball of radius R has cardinality O(1 + (R/δ)O(1)). Taking

R = 12r and δ = r, we have that |M | ≤ O(1 + 12O(1)) = O(1). For points in Rd

this constant is 1 + 12d. Letting c denote this quantity, we see that no point can be

marked more than c times, and hence the process terminates after at most c rounds,

producing at most c partitions.

Note that a cluster centered at p′ with less than k + 1 points does not violate

the k-clusterable property since this cluster would have been created by clustering

NN k(p
′) together as originally identified before any points were partitioned. A clus-

ter without k + 1 points is formed because some of the original points in NN k(p
′)

were previously added to a different partition. Since being mutual k-close is based

on the entire set, smaller clusters are still mutually k-close within that partition.

95

Figure accompanying the proof of Lemma 4.2

Figure 4.2: Proof illustration for Lemma 4.2 for k = 6. Solid circles are centered at

point p′. Solid lines show the radii of these circles. Dashed arcs are partial circles

centered at point p. Dashed lines show the radii of these circles.

4.3.2 Compression Theorem

We now present the main compression algorithm and analysis. The algo-

rithm, presented in Figure 4.3, compresses each cluster formed by the partitioning

algorithm (Figure 4.1) separately and returns the union of these. Each cluster is

compressed by creating a new stream in which the tth character is a new charac-

ter which is the concatenation of the tth character of every stream in that cluster.

This new stream is then compressed using an entropy-based compression algorithm

which achieves the optimal encoding length in the limit. For example, the Lempel-

Ziv sliding-window compression algorithm could be used [ZL77]. We reason about

96

compress(stream set X, sensor set P , k)

{P1, P2, . . . , Pc} = partition (P, k)

for i = 1 to c

for all clusters j in Pi containing streams Xij1 through Xijhij

X̂ij =
⋃T
t=1Xij1t&Xij2t& . . .&Xijhijt where Xijht is the tth character of Xijh

return
⋃
ij entropy compress(X̂ij)

Figure 4.3: The compression algorithm which takes a set X of streams of length T

and the associated set P of sensors which recorded them and returns a compressed

encoding of length c·H, whereH is the joint entropy of the streams. The partitioning

algorithm shown in Figure 4.1 is called and determines the constant c and represents

the concatenation of characters to create a larger character. entropy compress is an

entropy-based compression algorithm which achieves the optimal encoding length

in the limit and returns an encoded stream.

the size of the resulting stream set encoding.

First, we introduce some notation. Let X be the set of streams containing

the information recorded by the sensors of set P where |X| = |P |. Given the set of

partitions {Pi} resulting from the partitioning lemma in Section 4.3.1, {Xi} is the

set of associated streams. Let {Cij} be the set of clusters that are created by the

partitioning algorithm, we call {Xij} the set of streams in cluster Cij and Xijh is

the hth stream in cluster Cij with cardinality hij.

Theorem 4.1. A set of streams which represent observations from a k-local sensor

system can be compressed to an encoded string which has length at most c times the

optimal, where c is a constant depending on the doubling dimension of the underlying

97

point set.

Proof. First, we show that each cluster Cij is compressed to a string whose length

is equal to the joint entropy of the component streams of that cluster. Each clus-

ter consists of streams {Xij} which are merged into one new stream by concate-

nating the tth character of all the streams to create the tth character of the new

stream. This new stream, X̂ij, is then compressed using an optimal compression al-

gorithm. By construction of the streams X̂ij, the entropy H(X̂ij) of a single stream

is equal to the joint entropy of its component streams H(Xij1, Xij2, . . . , Xijhij
).

The entropy-based encoding algorithm compresses each X̂ij to an encoded string

the length of the stream’s entropy and that compression is optimal [WZ94], so

H(Xij1, Xij2, . . . , Xijhij
) is the optimal encoding length for cluster Cij.

Our local dependence assumptions, explained in Section 4.2, say that the

stream of data from a sensor is only dependent on the streams of its k nearest

neighbors. Additionally, recall that in Section 4.2 we defined being mutually k-close

to require that streams are only dependent if they come from sensors who are in

each other’s k nearest neighbor sets. By the partitioning lemma from Section 4.3.1,

we know that each cluster Cij is independent of all other clusters in partition Pi.

From standard information theoretic results [CT06] we know that for a collection

of streams Y1, . . . , YS, H(Y1, Y2, . . . , YS) =
∑S

i=1 H(Yi) if and only if the Yi are in-

dependent. Since the elements of {{Xi1}, {Xi2}, . . . , {Xi|{Cij}|}} are independent,

H(Xi) =
∑

j H({Xij}). Combining this with the fact that H(X̂ij) is equal to the

joint entropy of its component streams, we have that H(Xi) =
∑

j H(X̂ij). H(Xi)

98

is the optimal compression bound for partition Pi, so we achieve the optimal com-

pression for each partition.

Finally, we show that our compression algorithm is a c-approximation of the

optimal. We say that a compression algorithm provides a γ-approximation if the

length of the compressed streams is no more than γ times the optimal length. Re-

call that c partitions are generated by the partitioning algorithm from Section 4.3.1.

Each of these partitions is encoded by a string of length H(Xi) in the limit, so the to-

tal encoding size is
∑c

i=1H(Xi) ≤ c·maxiH(Xi) ≤ c·H(X), where H(X) is the joint

entropy, which is a lower bound on the optimal encoding size, and the last inequality

follows since |X| ≥ |Xi| for all i. So our algorithm provides a c-approximation of

the optimal compression.

Note that using the same method we used to compress the members of individ-

ual clusters, we could have combined the characters of all streams and compressed

these together. This method would have optimal compression to the joint entropy

of the streams. For demonstration of the problem with this method, consider the

Lempel-Ziv sliding-window algorithm [ZL77]. The algorithm proceeds by looking for

matches between the current time position and some previous time within a given

window into the past. The length and position of these matches are then recorded,

which saves the space of encoding each character. The window moves forward as

time progresses. Larger window sizes yield better results since matches are more

likely to be found. The optimal encoded length is achieved by taking the limit as

the window size tends to infinity [WZ94]. If all streams are compressed at once, the

99

optimal compression rate is only achieved in the limit as the window size becomes

large and in practice compressing all streams at once requires a much larger window

before the compression benefits begin. By only compressing k streams together we

limit the effect of this problem.

4.4 Efficiency with Respect to Short-Haul KDS

We believe that k-local entropy is a reasonable measure of the complexity of

geometric motion. It might seem at first that any system that is based on monitor-

ing the motion of a large number of moving objects by the incremental counts of a

large number of sensors would produce such a huge volume of data that it would

be utterly impractical as a basis for computation. Indeed, this is why compression

is such an important ingredient in our framework. But, is it reasonable to assume

that lossless compression can achieve the desired degree of data reduction needed

to make this scheme competitive with purely prescriptive methods such as KDS?

In this section, we consider a simple comparison, which suggests that lossless com-

pression can achieve nearly the same bit rates as KDS would need to describe the

motion of moving objects.

This may seem like comparing “apples and oranges,” since KDS assumes pre-

cise knowledge of the future motion of objects through the use of flight plans. In

contrast, our framework has no precise knowledge of individual point motions (only

the occupancy counts of sensor regions) and must have the flexibility to cope with

whatever motion is presented to it. Our analysis will exploit the fact that, if the mo-

100

tion of each point can be prescribed, then the resulting system must have relatively

low entropy. To make the comparison fair, we will need to impose some constraints

on the nature of the point motion and the sensor layout. First, to model limited

statistical dependence we assume that points change their motion plans after trav-

eling some local distance threshold `. Second, we assume that sensor regions are

modeled as disks of constant radius, and (again to limit statistical dependence) not

too many disks overlap the same region of space. These assumptions are not part

of our framework. They are just useful for this comparison.

Here we will assume that flight plans are linear and that motion is in the

plane, but generalizations are not difficult. Let Q denote a collection of n moving

objects over some long time period 0 ≤ t ≤ T . We assume that the location of

the ith object is broken into some number of linear segments, each represented by

a sequence of tuples (ui,j,vi,j, ti,j) ∈ (Z2,Z2,Z+), which indicates that in the time

interval t ∈ (ti,j−1, ti,j], the ith object is located at the point ui,j + t · vi,j. (Let

ti,0 = 0.) We assume that all these quantities are integers and that the coordinates

of ui,j, vi,j are each representable with at most b bits. Let ∆i,j = ti,j − ti,j−1 denote

the length of the j time interval for the ith point.

In most real motion systems objects change velocities periodically. To model

this, we assume we are given a locality parameter ` for the system, and we assume

that the maximum length of any segment (that is, maxi,j ∆i,j · ‖vi,j‖) is at most `.

Let m be the minimum number of segments that need to be encoded for any single

object. Assuming a fix-length encoding of the numeric values, each segment requires

at least 4b bits to encode, which implies that the number of bits needed to encode

101

the entire system of n objects for a single time step is at least

Bkds(n, `) ≥ 4n ·m · b
T

.

We call this the short-haul KDS bit rate for this system.

In order to model such a scenario within our framework, let P denote a col-

lection of S sensors in the plane. Let us assume that each sensor region is a disk of

radius λ. We may assume that the flight plans have been drawn according to some

stable random process, so that the sensor output streams satisfy the assumptions

of stationarity and ergodicity. We will need to add the reasonable assumption that

the sensors are not too densely clustered (since our notion of locality is based on

k-nearest neighbors and not on an arbitrary distance threshold.) More formally, we

assume that, for some constant γ ≥ 1, any disk of radius r > 0 intersects at most

γ dr/λe2 sensor regions. Let X = (X1, X2, . . . , XS) denote the resulting collection

of sensor output streams, and let Hk(n, `)
def
= Hk(X) denote the normalized k-local

entropy of the resulting system. Our main result shows that the k-local entropy is

within a constant factor of the short-haul KDS bit rate, and thus is a reasonably

efficient measure of motion complexity even when compared to an approach based

on prescribing the motions.

Theorem 4.2. Consider a short-haul KDS and the sensor-based systems defined

above. Then for all sufficiently large k

Hk(n, `) ≤
(

4 `

λ

√
γ

k
+ 1

)
Bkds(n, `).

Before giving the proof, observe that this implies that if the locality parameter

102

k grows proportionally to (`/λ)2, then we can encode the observed continuous mo-

tion as efficiently as its raw representation. That is, k should be proportional to the

square of the number of sensors needed to cover each segment of linear motion. Note

that this is independent of the number of sensors and the number of moving objects.

It is also important to note that this is independent of the sensor sampling rate. Dou-

bling the sampling frequency will double the size of the raw data set, but it does not

increase the information content, and hence does not increase the system entropy.

Corollary 1. By selecting k = Ω((`/λ)2), we have Hk(n, `) = O(Bkds(n, `)).

Proof. Consider an arbitrary moving object j of the system, and let Xi,j denote

the 0–1 observation counts for sensor i considering just this one object. Let X(j) =

(X1,j, X2,j, . . . , XS,j) denote the resulting single-object sensor system. Clearly, Hk(X)

≤∑n
j=1Hk(X(j)), since the latter is an upper bound on the joint k-local entropy of

the entire system, and the sum of observations cannot have greater entropy than the

joint system since the sum generally contains less information than the individual

observations.

Let mj be the number of segments representing the motion of object j. Each

segment is of length ≤ `. Consider the per-object KDS bit-rate for object j, de-

noted Bkds(j). Note that KDS considers the motion of each object individually, so

Bkds =
∑n

j=1Bkds(j). KDS requires 4b bits per segment, so Bkds(j) ≥ 4·b·mj

T
. Let

`′ = (λ/4)
√
k/γ. Observe that `′ > 0. Subdivide each of the mj segments into at

most b`/`′c subsegments of length `′ and at most one of length less than `′ . Then

there are a total of at most mj(`/`
′ + 1) subsegments of length `′.

103

We claim that the joint entropy of the sensors whose regions intersect each

subsegment is at most 4b. To see this, observe that there are 24b possible linear

paths upon which the object may be moving, and each choice completely deter-

mines the output of all these sensors (in this single-object system). The entropy

is maximized when all paths have equal probability, which implies that the joint

entropy is log2 24b = 4b. Recall that at most γdr/λe2 sensor regions intersect any

disk of radius r. Let r = `′ be the radius of a disk that covers a subsegment.

Then at most γd(1/4)
√
k/γe2 sensor regions can intersect some subsegment. We

assert that all sensors intersecting this subsegment are mutually k-close. To see

this, consider some sensors s1 and s2, with sensing region centers c1 and c2 respec-

tively, that intersect such a subsegment. Observe that, by the triangle inequality,

||c1c2|| ≤ 2λ + `′. Recall that `′ = (λ/4)
√
k/γ. Choosing k ≥ 16γ, this means

that λ ≤ `′, so 2λ + `′ ≤ 3`′. Thus, for each sensor s1 whose region overlaps this

subsegment, the centers of the other overlapping sensor regions lie within a disk

of radius 3`′ centered at c1. In order to establish our assertion, it suffices to show

that the number of sensor centers lying within such a disk is at most k. Again

recall that at most γdr/λe2 sensor regions intersect any disk of radius r, so at most

γd(3/4)
√
k/γe2 sensor regions intersect the disk of radius 3`′. Under our assump-

tion that k ≥ 16γ, it is easy to verify that γd(3/4)
√
k/γe2 ≤ k, as desired. Since the

overlapping sensors are all mutually k-close, their k-local entropy is equal to their

joint entropy, and so the the k-local entropy is also at most 4b. Thus, to establish an

upper bound on Hk(X(j)), it suffices to multiply the total number of subsegments

104

by 4b and normalize by dividing by T . So we have

Hk(X(j)) ≤
(
`

`′
+ 1

)
4bmj

T
≤
(
`

`′
+ 1

)
Bkds(j) =

(
4`

λ

√
γ

k
+ 1

)
Bkds(j).

Considering the normalized k-local entropy of the entire system, we have

Hk(X) ≤
n∑
j=1

(
4`

λ

√
γ

k
+ 1

)
Bkds(j) =

(
4`

λ

√
γ

k
+ 1

)
Bkds,

which completes the proof.

105

Chapter 5

Realistic Issues in Compression of
Kinetic Sensor Data

We introduce a realistic analysis for a framework for storing and processing

kinetic data observed by sensor networks. The massive data sets generated by these

networks motivate a significant need for compression. We are interested in the

kinetic data generated by a finite set of objects moving through space. Our previ-

ously introduced framework and accompanying compression algorithm (see Chapter

4) assumed a given set of sensors, each of which continuously observes these moving

objects in its surrounding region. The model relies purely on sensor observations; it

allows points to move freely and requires no advance notification of motion plans.

Here, we extend the initial theoretical analysis of this framework and com-

pression scheme to a more realistic setting. We extend the current understanding

of empirical entropy to introduce definitions for joint empirical entropy, conditional

empirical entropy, and empirical independence. We also introduce a notion of lim-

ited independence between the outputs of the sensors in the system. We show that,

even with this notion of limited independence and in both the statistical and empir-

ical settings, the previously introduced compression algorithm achieves an encoding

size on the order of the optimal. We present experiments that show that in practice

106

the constant factor associated with this encoding size is small and that the locality

assumption of the model is reasonable.

5.1 Introduction

In Chapter 4 we considered the issues of collection and compression of kinetic

sensor data under a theoretical analysis. The framework we presented is purely

observational; it relies on no assumptions or advance knowledge about the under-

lying object motion. We introduced a lossless compression algorithm within this

framework and showed that, when considered in terms of the Shannon entropy, the

compression algorithm achieved storage space on the order of the optimal joint en-

tropy bound. This compression algorithm relied on the assumption that a sensor’s

output is statistically dependent only on the output of other locally close sensors.

While the framework presented in Chapter 4 provided theoretical guarantees

on the compression rates it achieves, it is based on a theoretical model of sensor

networks that may not be satisfied in practice. In particular, it has two significant

drawbacks. The first is an analysis based in the statistical setting using Shannon

entropy and its extensions. These entropy definitions assume an underlying random

process that generates the data, and when analyzing a specific data set the probabil-

ities associated with each random variable are known in advance; when considering

observed sensor data, this assumption is unrealistic. We extend the framework anal-

ysis to hold under the more realistic definition of empirical entropy [KM99] that has

the advantage of not assuming an underlying stationary, ergodic random process.

107

Empirical entropy relies only on the observed probabilities of the sensor data val-

ues. In order to perform the complex analyses for the framework in the empirical

setting, we also introduce new definitions for empirical entropy constructs that are

analogous to existing statistical ones: joint empirical entropy, conditional empirical

entropy, and empirical independence.

The second modification to the previously introduced framework that should

be made in order to create a more realistic analysis concerns its assumptions of

independence. The framework makes the assumption that sensor outputs are de-

pendent only on their neighbors and are purely independent of all other outputs.

However, it may be the case that there is some underlying dependence that may be

common to many or all sensor outputs. For example, if the sensors are detecting

and reporting car traffic counts, while nearby sensors may be more likely to see the

same traffic patterns at consecutive time intervals, all sensors are likely to see a de-

crease in traffic at night and increases during rush hours. In order to analyze these

underlying commonalities in the context of the framework for kinetic sensor data

we introduce a notion of limited independence in both the statistical and empirical

settings. We also verify experimentally that the locality assumption that nearby

sensors have more related outputs than distant sensors holds.

With the addition of the realistic assumptions of empirical entropy and limited

independence, we revisit the space bounds for the framework compression algorithm

and prove that the encoding size is on the order of the optimal size under an as-

sumption of limited independence for both the statistical and empirical settings.

We also show that in practice the constant factor associated with this encoding size

108

is small. These extensions confirm that the framework and its accompanying com-

pression scheme are realistic for use with kinetic sensor data. These new bounds on

the encoding size have proved useful in space and time analyses for spatio-temporal

range searching over compressed kinetic sensor data (see Chapter 6).

In summary, this chapter makes the following contributions to the understand-

ing and realistic analysis of kinetic sensor data:

• An extension of the definition of empirical entropy to definitions for joint

empirical entropy, conditional empirical entropy, and empirical independence.

(See Section 5.3.)

• An analysis of a lossless compression algorithm based on empirical entropy

within a sensor-based framework for kinetic data. (See Section 5.5.)

• The introduction of a notion of limited independence between sensor outputs

in both statistical and empirical settings. (See Section 5.4.)

• The analysis of compression space bounds taking the notion of limited inde-

pendence into account in both statistical and empirical settings. (See Section

5.5.)

• Experimental analyses of kinetic sensor data locality and the constant factor

for a lossless compression algorithm’s encoding size bound. (See Section 5.6.)

109

5.2 Statistical Setting

As a point of reference, we begin by considering entropy and independence

in the traditional statistical setting. Recall from Chapter 2.4 that in this setting a

sensor’s output stream is modeled by a stationary, ergodic random process X over

an alphabet Σ of fixed size. The statistical probability p(x) of some outcome x ∈ Σ

is the probability associated with that outcome by the underlying random process.

The statistical entropy of X is defined to be −∑x∈Σ p(x) log p(x). (Throughout,

logarithms are taken base 2.) The normalized statistical entropy generalizes this to

strings of increasing length:

Hk(X) = − 1

k

∑
x∈Σk

p(x) log p(x),

where in the standard definition, k is considered in the limit:

H(X) = lim
k→∞
Hk(X).

A fundamental fact from information theory is that this value represents the

number of bits needed to encode a single character of the stream [CT06]. Unless

otherwise specified, all references to entropy will mean normalized entropy. The

normalized joint statistical entropy of two streams X and Y is defined to be

H(X, Y) = lim
k→∞
−1

k

∑
x,y∈Σk

p(x, y) log p(x, y),

where p(x, y) denotes the joint probability of both x and y occurring. The nor-

malized joint statistical entropy of a set of strings X = {X1, . . . , XZ} is defined

analogously and is denoted H(X).

110

We say that two sensor streams X and Y are statistically independent if, for

all k and any x, y ∈ Σk, we have p(x, y) = p(x)p(y). If X and Y are statistically

independent then H(X, Y) = H(X) +H(Y) [CT06]. The following technical result

will be of later use.

Lemma 5.1. Consider two sensor outputs X and Y over the same time period.

Let X + Y denote the componentwise sum of these streams. Then H(X + Y) ≤

H(X, Y) ≤ H(X) +H(Y).

Proof. To prove the first inequality, let Z = X + Y , and observe that p(z) =∑
x+y=z p(x, y). Clearly, if x+ y = z, then p(x, y) ≤ p(z). Thus,

H(X + Y) = −
∑
z

p(z) log p(z) ≤ −
∑
z

∑
x,y

x+y=z

p(x, y) log p(x, y)

= −
∑
x,y

p(x, y) log p(x, y) = H(X, Y).

By basic properties of conditional entropy (see, e.g., [CT06]), we have

H(X, Y) = H(X) +H(Y |X) ≤ H(X) +H(Y),

which establishes the second inequality.

5.3 Empirical Setting

Unlike statistical entropy, empirical entropy is based purely on the observed

string, and does not assume an underlying random process. It replaces the proba-

bilities of normalized entropy over substrings of length k by observed probabilities,

conditioned on the value of the previous k characters. Let X be a string of length

111

T over some alphabet Σ of fixed size. For k ≥ 1 and x ∈ Σk, let c0(x) denote the

number of times x appears in X, and let c(x) denote the number of times x appears

without being the suffix of X. Let pX(x) = c(x)/(T − k) denote the observed proba-

bility of x in X. (When X is clear from context, we will express this as p(x).) Recall

from Chapter 2.4.1 that following the definitions of Kosaraju and Manzini [KM99],

the 0th order empirical entropy of a string X is defined to be

H0(X) = −
∑
a∈Σ

p(a) log p(a) = −
∑
a∈Σ

c0(a)

T
log

c0(a)

T
.

For a ∈ Σ, let pX(a|x) = c(xa)/c(x) denote the observed probability that a is the

next character of X immediately following x. The kth order empirical entropy is

defined to be

Hk(X) = − 1

T

∑
x∈Σk

c(x)

[∑
a∈Σ

p(a|x) log p(a|x)

]
.

As observed in Kosaraju and Manzini [KM99], it is easily verified that T · Hk(X)

is a lower bound to the output size of any compressor that encodes each symbol

with a code that only depends on the symbol itself and the k immediately preceding

symbols. In the rest of this section, we introduce new extensions of these notions of

empirical entropy to concepts that are analogous to those defined for the statistical

entropy. Given two strings X, Y ∈ ΣT and x, y ∈ Σk, define c(x, y) to be the count

of the number of indices i, 1 ≤ i ≤ T − k, such that X[i . . . i + k − 1] = x and

Y [i . . . i + k − 1] = y. Define pX,Y(x, y) = c(x, y)/(T − k). For a, b ∈ Σ, define

pX,Y(a, b|x, y) = c(xa, yb)/c(x, y) to be the observed probability of seeing a and b in

X and Y , respectively, just after seeing x and y. The joint empirical entropy of X

112

and Y is defined to be

Hk(X, Y) = − 1

T

∑
x,y∈Σk

c(x, y)

[∑
a,b∈Σ

pX,Y(a, b|x, y) log p(a, b|x, y)

]
.

The joint empirical entropy of a set of strings X = {X1, . . . , XZ} is defined analo-

gously and is denoted Hk(X).

We define the conditional empirical entropy of two strings X, Y ∈ ΣT to be

Hk(X|Y) = − 1

T

∑
x,y∈Σk

c(x, y)
∑
a,b∈Σ

pX,Y(a, b|x, y) log pX,Y(x, a|y, b),

where we define pX,Y(x, a|y, b) = pX,Y(a, b|x, y)/pY(b|y) to be the probability that a

directly follows x in X given that b directly follows y in Y .

We say that two stringsX and Y are empirically independent if, for all j ≤ k+1

and all x, y ∈ Σj, the observed probability of x occurring at the same time instant as

y is equal to the product of the observed probabilities of each outcome individually,

that is, pX,Y(x, y) = pX(x)pY(y). If X and Y are empirically independent then this

also implies that, for a ∈ Σ and b ∈ Σ, pX,Y(a, b|x, y) = pX(a|x)pY(b|y).

The following technical lemma provides a few straightforward generalizations

regarding properties of statistical entropy to empirical entropy.

Lemma 5.2. Consider two strings X, Y ∈ ΣT . Let X+Y denote the componentwise

sum of these strings.

(i) If X and Y are empirically independent, Hk(X, Y) = Hk(X) + Hk(Y).

(ii) Hk(X, Y) = Hk(X) + Hk(Y |X).

(iii) Hk(X, Y) ≤ Hk(X) + Hk(Y).

113

(iv) Hk(X + Y) ≤ Hk(X) + Hk(Y).

Proof. We will not prove (i) here, since it will follow as a special case of Lemma 5.4

below (by setting δ = 0). To prove (ii), observe that by manipulation of the defini-

tions

Hk(X, Y) = − 1

T

∑
x,y∈Σk

c(x, y)

[∑
a,b∈Σ

pX,Y(a, b|x, y) log pX,Y(a, b|x, y)

]

= Hk(X) + Hk(Y |X).

Symmetrically, we have Hk(X, Y) = Hk(Y) + Hk(X|Y).

To prove (iii), using (ii) we need only prove that Hk(Y |X) ≤ Hk(Y). By

definition, we have

Hk(Y |X) = − 1

T

∑
x,y∈Σk

c(x, y)

[∑
a,b∈Σ

c(xa, yb)

c(x, y)
log

c(xa, yb)

c(x, y)

]
.

Since clearly c(x, y) ≤ c(y) for all x and y, this means that

Hk(Y |X) ≤ − 1

T

∑
y∈Σk

c(y)

[∑
b∈Σ

c(yb)

c(y)
log

c(yb)

c(y)

]

= − 1

T

∑
y∈Σk

c(y)

[∑
b∈Σ

pY (b|y) log pY (b|y)

]
= Hk(Y) ,

which completes the proof of (iii).

To prove (iv), let Z = X + Y . By the definition of empirical entropy we have

Hk(X + Y) =

− 1

T

∑
z∈Σk

∑
x,y

x+y=z

c(x+ y)

∑
g∈Σ

∑
a,b

a+b=g

pZ(a+ b|x+ y) log pZ(a+ b|x+ y)

 ,
114

where x + y is an outcome of length k and a + b is an outcome of length 1 in the

new string X + Y . By the same reasoning as in Lemma 5.1, pX,Y(x, y) ≤ pZ(x+ y).

Substituting this relationship into our equation and, since we desire an upper bound,

considering only cases in which

−pX,Y(a+ b|x+ y) log pX,Y(a+ b|x+ y) ≤ −pX,Y(a, b|x, y) log(pX,Y(a, b|x, y)),

we find that

Hk(X + Y) ≤ − 1

T

∑
x+y∈Σk

c(x, y)

[∑
a,b∈Σ

pX,Y(a, b|x, y) log pX,Y(a, b|x, y)

]
= Hk(X, Y).

By (iii) we have Hk(X, Y) ≤ Hk(X) + Hk(Y), which implies that Hk(X + Y) ≤

Hk(X) + Hk(Y), as desired.

5.4 Limited Independence

Perfect statistical or empirical independence is too strong an assumption to im-

pose on sensor outputs. For example, if strings are drawn from independent sources,

empirical independence will hold only in the limit. To deal with this, in this section

we introduce a notion of limited independence for both the statistical and empirical

settings. Given 0 ≤ δ < 1, we say that a set of sensor streams X = {X1, X2, ..., XZ}

is statistically δ-independent if, for any k and outcomes xi ∈ Σk,

(1− δ)
Z∏
i=1

p(xi) ≤ p(x1, x2, ..., xZ) ≤ (1 + δ)
Z∏
i=1

p(xi).

In the following lemma, we develop a relationship regarding the entropies of statis-

tically δ-independent streams.

115

Lemma 5.3. Given 0 ≤ δ < 1 and a set of statistically δ-independent streams X =

{X1, X2, ..., XZ}, (1− δ)(∑Z
i=1H(Xi))−O(δ) ≤ H(X) ≤ (1 + δ)(

∑Z
i=1H(Xi)) +

O(δ) .

Proof. For simplicity of presentation, here we prove the lemma for sets X = {X, Y }.

The proof for a set of any size follows clearly from this presentation.

Recall that

H(X, Y) = lim
k→∞
−1

k

∑
x∈X,y∈Y

p(x, y) log p(x, y).

By the assumption of statistical δ-independence, and by manipulation of the defini-

tions, we have

H(X, Y) ≤ lim
k→∞
−1

k

∑
x∈X,y∈Y

p(x)p(y)(1 + δ) log(p(x, y))

≤ lim
k→∞

1

k

∑
x∈X,y∈Y

p(x)p(y)(1 + δ) log
1

p(x)p(y)(1− δ)

= (1 + δ)(H(X) +H(Y)) + lim
k→∞

1 + δ

k
log

1

1− δ .

By a Taylor expansion in the neighborhood of δ = 0, we see that (1 + δ) log 1
(1−δ) =

O(δ), which yields H(X, Y) ≤ (1 + δ)(H(X) + H(Y)) + O(δ). The proof that

(1− δ)(H(X) +H(Y))−O(δ) follows symmetrically.

We also introduce the idea of limited independence in the context of em-

pirical entropy. Given 0 ≤ δ < 1 a set of strings {X1, X2, ..., XZ} is empirically

δ-independent if, for all xi ∈ Σj for j ≤ k + 1,

(1− δ)
Z∏
i=1

p(xi) ≤ p(x1, x2, ..., xZ) ≤ (1 + δ)
Z∏
i=1

p(xi).

116

Lemma 5.4. Given 0 ≤ δ < 1, and a set of empirically δ-independent strings

X = {X1, X2, ..., XZ} for Xi ∈ Σj where j ≤ k + 1,

(1− δ)
Z∑
i=1

Hk(Xi)−O(δ) ≤ Hk(X) ≤ (1 + δ)
Z∑
i=1

Hk(Xi) +O(δ).

Proof. For simplicity of presentation, here we prove the lemma for sets X = {X, Y }.

The general case is a straightforward generalization.

Hk(X, Y) = − 1

T

∑
x,y∈Σk

c(x, y)
∑
a,b∈Σ

p(a, b|x, y) log p(a, b|x, y)

Let p(a, b|x, y) = pX,Y(a, b|x, y), and recall that pX,Y(a, b|x, y) = c0(xa, yb)/c(x, y)

where c0(xa, yb) is the number of times the string xa ∈ X appears at the same

indices as yb ∈ Y , we have

Hk(X, Y) = − 1

T

∑
x,y∈Σk

c(x, y)
∑
a,b∈Σ

c0(xa, yb)

c(x, y)
log p(a, b|x, y)

= − 1

T

∑
x,y∈Σk

∑
a,b∈Σ

c0(xa, yb)(T − k)

T − k log p(a, b|x, y).

Since p(xa, yb) = c0(xa,yb)
T−k and p(a, b|x, y) = c0(xa,yb)

c(x,y)
this is

Hk(X, Y) = − T − k
T

∑
x,y∈Σk

∑
a,b∈Σ

p(xa, yb) log

(
p(xa, yb)

p(x, y)

)
.

Before proceeding with this analysis, we develop a useful relationship.

−(T − k)

T

 ∑
x,y∈Σk

p(x)p(y)
∑
a,b∈Σ

p(a|x)p(b|y) log(p(a|x)p(b|y))

= − 1

T

∑
x∈Σk

c(x)
∑
a∈Σ

p(a|x) log p(a|x) +
∑
y∈Σk

c(y)
∑
b∈Σ

p(b|y) log p(b|y)

= Hk(X) + Hk(Y).

Now we develop an upper bound on the earlier equation. Let

f = −p(xa, yb) log
p(xa, yb)

p(x, y)
= p(xa, yb) log

p(x, y)

p(xa, yb)
.

117

Then the equation we wish to bound is

T − k
T

∑
x,y∈Σk

∑
a,b∈Σ

f,

where, by the definition of δ-independence,

f ≤ (1+δ)p(xa)p(yb) log

(
p(x, y)

p(xa, yb)

)
≤ (1+δ)p(xa)p(yb) log

(
(1 + δ)p(x)p(y)

(1− δ)p(xa)p(yb)

)
.

Since p(xa, yb) = p(a|x)p(x)p(b|y)p(y), this is equal to

(1 + δ)p(x)p(y)p(a|x)p(b|y) log

(
(1 + δ)

(1− δ)p(a|x)p(b|y)

)
= (1 + δ)p(x)p(y)p(a|x)p(b|y)

(
log

(1 + δ)

(1− δ) − log (p(a|x)p(b|y))

)
.

Substituting back in for f and using our previously developed relationship, we have

Hk(X, Y) ≤ (1 + δ)(Hk(X) + Hk(Y)) +

(1 + δ)(T − k)

T

∑
x,y∈Σk

p(x)p(y)
∑
a,b∈Σ

p(a|x)p(b|y) log
1 + δ

1− δ

= (1 + δ)(Hk(X) + Hk(Y)) +
(1 + δ)(T − k)

T
log

1 + δ

1− δ .

Let

g(δ) = log
1 + δ

1− δ = log

(
1 +

2δ

1− δ
)

.

Consider the Taylor expansion for g(δ) in the neighborhood of δ = 0 (i.e., the

Maclaurin series). The Maclaurin series for g(δ) is within a constant factor of the

expansion for log(1/(1 − δ)) = δ + δ2/2 + δ3/3 + O(δ4). Since δ < 1 by definition,

δi > δj for i < j, so log(1/(1− δ)) = O(δ) and g(δ) = O(δ). Substituting back into

our main inequality, we have

Hk(X, Y) ≤ (1 + δ)(Hk(X) + Hk(Y)) +
(1 + δ)(T − k)

T
O(δ)

≤ (1 + δ)(Hk(X) + Hk(Y)) +O(δ).

118

The proof that

(1− δ)(Hk(X) + Hk(Y))−O(δ) ≤ Hk(X, Y)

proceeds symmetrically.

5.5 Compression Space Bounds

In this section will consider the encoding size that can be achieved by Par-

titionCompress (the compression algorithm introduced in Chapter 4). Recall that

PartitionCompress relies on a compression algorithm as a subroutine; the compres-

sion bounds for this subroutine will impact the final encoding size achieved by Parti-

tionCompress . We will analyze this size in both statistical and empirical settings. In

either context, we will use Encalg(X) to denote the length of the encoded set of sen-

sor outputs X, where alg is the compression algorithm used by PartitionCompress .

Encalg(X) will be the bound on which we build our analyses in Chapter 6. Also

recall that PartitionCompress creates sets of jointly encoded streams representing

clusters. We will consider the set of these streams X = {X1, ..., XZ} representing

the clusters from a single one of the c created partitions.

5.5.1 Statistical Setting

Given a set of streams X = {X1, X2, ..., XZ} from independent clusters in a

single partition in a statistical setting, standard information theory results [CT06]

tell us that the optimal encoded space is
∑Z

i=1H(Xi) bits. Call this Sopt(X). From

Section 5.4, we know that the optimal space used by an encoded set of statistically

119

δ-independent streams X is (1− δ)
(∑Z

i=1H(Xi)
)
−O(δ) bits. Call this Sopt(X, δ).

Let opt be some compression algorithm that achieves the optimal statistical en-

tropy encoding length, for example LZ78, the Lempel-Ziv dictionary compression

algorithm [ZL78].

Recall that central to our framework is the notion that each sensor’s output

is statistically dependent on a relatively small number of nearby sensors. For some

point p ∈ P , let NNm(p) ⊆ P be the m nearest neighbors of p. Sensors i and

j with associated sensor positions pi, pj ∈ P are said to be mutually m-close if

pi ∈ NNm(pj) and pj ∈ NNm(pi). For a constant m, a sensor system is said to be m-

local if all pairs of sensors that are not mutuallym-close are statistically independent.

The compression of a single cluster of neighboring sensors may be performed using

any string compression algorithm; to obtain the near optimal bound, this algorithm

must compress streams to their optimal entropy bound. We will show that LZ78 is

sufficient for our purposes.

We know from Chapter 4 that Encopt(X) = O(H(X)) bits for a set of observa-

tions from an m-local sensor system, where the hidden constant is exponential in m

and the doubling dimension. We define a statistically (δ,m)-local sensor system to

be the same as an m-local sensor system but with an assumption of δ-independence

between the clusters instead of pure independence. We have the following theorem

regarding the space used by PartitionCompress :

Theorem 5.1. Given a set X of sensor outputs from a statistically (δ,m)-local

120

sensor system, for any 0 ≤ δ < 1− Ω(1),

Enc(X) = O(max{δT, Sopt(X, δ)}) bits.

Proof. Let X = {X1, ..., XZ} be the jointly encoded streams representing clusters

in a single partition. The optimal space bound for that single partition is

Sopt(X, δ) = T (1− δ)
Z∑
i=1

H(Xi) − T ·O(δ)

while PartitionCompress achieves a bound of

Sopt(X) = T ·
Z∑
i=1

H(Xi)

for a single partition. The ratio is

∑Z
i=1H(Xi)

(1− δ)
[∑Z

i=1H(Xi)
]
−O(δ)

.

The rest of the proof proceeds similarly to the proof of Theorem 5.3, but for H(Xi)

instead of Hk(Xi) and with an extra constant factor hidden in the final bound. Note

that since this analysis is only for a single partition, there is also a factor of c hidden

in the final bound.

The space established in Theorem 5.1 is the basic statistical encoded space

bound. It hides constants that are exponential in m and the doubling dimension. As

a direct consequence of Lemma 5.1 and Theorem 5.1 we have the following corollary:

Corollary 2. Consider two sensor outputs X and Y over the same time period.

Let X + Y denote the componentwise sum of these streams over some commutative

semigroup. Then Encopt(X +Y) ≤ Encopt(X) +Encopt(Y) in the statistical setting.

121

5.5.2 Empirical Setting

In the rest of this section, we extend the results of Section 5.5.1 to the empir-

ical setting. In order to reason about the empirically optimal space bound for a set

of strings X, consider the string X∗ over the alphabet ΣZ created from the original

set of strings by letting the ith character of the new string, for 1 ≤ i ≤ T , be equal

to a new character created by concatenating the ith character of each string in the

original set. As mentioned earlier, the new string’s optimal encoded space bound is

T · Hk(X
∗).

Lemma 5.5. Given a set of strings X and a string X∗ created from X as described

above, Hk(X
∗) = Hk(X).

Proof. Recall that the definition of joint empirical entropy is based on the observed

probability that single characters occur in all strings at the same string index di-

rectly after specific substrings of length k. Observe that by the construction of X∗,

simultaneous occurrences appear for the same indices at which a single combined

character appears in X∗. This observation implies that if Hk(X) is restated to refer

to the characters appearing in X∗, Hk(X
∗) = Hk(X).

Corollary 3. The minimum number of bits to encode a set X of strings, assuming

that each character depends only on the preceding k characters, is Sopt(X) = T ·

Hk(X).

We will rely on context to distinguish between Sopt(X) in statistical and em-

pirical contexts. Although this construction suggests a compression procedure, it

122

is impractical because in order to capture the repetitive nature of the strings in

X, the window size k would need to grow exponentially based on the size of the

alphabet for each additional sensor stream. Instead, we use the more local approach

of PartitionCompress .

We define an empirically m-local sensor system to be analogous to the defini-

tion of an m-local sensor system, but with an assumption of empirical independence

instead of statistical independence. Similarly, an empirically (δ,m)-local sensor sys-

tem assumes empirical δ-independence instead of statistical independence. The al-

gorithm PartitionCompress relies on an entropy encoding algorithm as a subroutine.

In the context of an empirical entropy-based analysis it would be appropriate to use

the data structure developed by Ferragina and Manzini [FM00] as the subroutine

that jointly compresses the streams from a single cluster. The Ferragina and Manzini

structure [FM00] gives an optimal space bound of O(T · Hk(Xi)) + T · o(1) where

Xi is the merged stream for that single cluster. We are interested in developing a

lower bound on the compression that can be achieved using PartitionCompress in an

empirical setting. Instead of using a specific algorithm we use the bound of Sopt(X)

discussed earlier and call the algorithm that achieves this bound opt. Assuming

empirical independence of the set of strings X from Z separate clusters within a

single partition, compressing these clusters separately achieves the optimal bound

of Sopt(X) = T ·∑Z
i=1 Hk(Xi) space for a single partition. As a direct consequence,

we have the following theorem.

Theorem 5.2. Given a set X of sensor outputs from an empirically m-local sensor

123

system, Encopt(X) = O(Sopt(X)) bits.

The hidden constants from Theorem 5.2 and for Theorems 5.3 and 5.4 grow

exponentially in m and the doubling dimension of the space in which the sensors

reside. If we consider empirical δ-independence, then the lower bound achieved

by the compression algorithm (over Z total clusters in a single partition) remains

O(T ·∑Z
i=1 Hk(Xi)), but

∑Z
i=1 Hk(Xi) is not generally equal to Hk(X), and so an

optimal algorithm may be able to reduce the bound due to the δ dependence al-

lowed. By application of Lemma 5.4, an optimal algorithm’s bound is Sopt(X, δ) =

T (1 − δ)
(∑Z

i=1 Hk(Xi)
)

+ T · O(δ). We have the following theorem regarding the

compressed size of the sensor outputs.

Theorem 5.3. Given a set X of sensor outputs from an empirically (δ,m)-local

sensor system for 0 ≤ δ < 1− Ω(1), Encopt(X) = O(max{δT, Sopt(X)}) bits.

Proof. An optimal algorithm would compress each partition to take the greatest

advantage of the dependence between clusters. It would achieve a space bound of

Sopt(X, δ) = T (1− δ)
[

Z∑
i=1

Hk(Xi)

]
− T ·O(δ)

for each partition. The PartitionCompress algorithm compresses each partition to

space

Sopt(X) = T

Z∑
i=1

Hk(Xi).

The ratio is

ρ =
Sopt(X)

Sopt(X, δ)
=

∑Z
i=1 Hk(Xi)

(1− δ)
[∑Z

i=1 Hk(Xi)
]
−O(δ)

.

Here we consider the two possible cases for the relationship of O(δ) to
∑Z

i=1 Hk(Xi):

124

1. Case O(δ) ≥∑Z
i=1 Hk(Xi):∑Z

i=1 Hk(Xi)

(1− δ)
[∑Z

i=1 Hk(Xi)
]
−O(δ)

=

[
1

1− δ
]
O(δ) = O(δ).

For this case, PartitionCompress ’s space bound is within O(δ) of the optimal

for a single one of the c partitions, or a total of O(δ) times Sopt(X, δ), which

is O(δ · T), since O(δ) ≥∑Z
i=1 Hk(Xi).

2. Case O(δ) <
∑Z

i=1 Hk(Xi):

1

1− δ

[
1

1−O(δ)/(1− δ)∑Z
i=1 Hk(Xi)

]
≤ 1

1− δ

[
1

1− 1
1−δ

]

= O

(
1

1− δ
)

= O(1 + δ) .

For this case, PartitionCompress ’s space bound is O((1 + δ)Sopt(X, δ)), which

is O(Sopt(X)) since δ < 1− Ω(1).

The final total space bound is max {O(δT), O (Sopt(X))}.

In this chapter, we will also be interested in the LZ78 algorithm, since the

dictionary created in the process of compression is useful for searching compressed

text without uncompressing it. While Kosaraju and Manzini [KM99] show that

LZ78 does not achieve the optimal bound of T ·Hk(X), they show that it uses space

at most T · Hk(X) + O((T log log T)/ log T). In our context, this means that each

cluster uses space T · Hk(X) +O((T log log T)/ log T).

Theorem 5.4. Given a set X = {X1, X2, ..., XZ} of sensor outputs taken over

a sufficiently long time T from an empirically (δ,m)-local sensor system, for any

125

0 ≤ δ < 1− Ω(1),

EncLZ78(X) = cT
Z∑
i=1

(
Hk(Xi) +O

(
log log T

log T

))
= O

(
max

{
δT, Sopt(X, δ),

T log log T

log T

})
bits.

Proof. An optimal algorithm would compress each partition to take the most ad-

vantage of the dependence between clusters. It would achieve a space bound of

T (1− δ)
[

Z∑
i=1

Hk(Xi)

]
− T ·O(δ)

while using LZ78 as the basis for PartitionCompress compresses each partition to

T
Z∑
i=1

Hk(Xi) +
Z∑
i=1

O((T log log T)/ log T)

where Z is the total number of clusters over all partitions. The ratio is∑Z
i=1 Hk(Xi) +

∑Z
i=1O((log log T)/ log T)

(1− δ)
[∑Z

i=1 Hk(Xi)
]
−O(δ)

=
1

1− δ

∑Z
i=1 Hk(Xi) +

∑Z
i=1O((log log T)/ log T)[∑Z

i=1 Hk(Xi)
]
−O(δ)

 .

Here we consider the two possible cases for the relationship of O(δ) to
∑Z

i=1 Hk(Xi):

1. Case O(δ) ≥∑Z
i=1 Hk(Xi):

1

1− δ

∑Z
i=1 Hk(Xi) +

∑Z
i=1O((log log T)/ log T)[∑Z

i=1 Hk(Xi)
]
−O(δ)

≤ 1

1− δ

[
O(δ) +

∑Z
i=1O((log log T)/ log T)

O(δ)

]
Choose T large enough so that O((log log T)/ log T) < O(δ). Then the ratio

is

≤
[

1

1− δ
]
O(δ) = O(δ)

126

for a single one of the c partitions, or O(δ) total times Sopt(X, δ), which is

O(δT) since O(δ) ≥∑Z
i=1 Hk(Xi).

2. Case O(δ) <
∑Z

i=1 Hk(Xi):

1

1− δ

∑Z
i=1 Hk(Xi) +

∑Z
i=1O((log log T)/ log T)[∑Z

i=1 Hk(Xi)
]
−O(δ)

=
1

1− δ

O(1) +

∑Z
i=1O((log log T)/ log T)

O
(∑Z

i=1 Hk(Xi)
)

 .

Here, we consider two sub-cases based on the relationship between

O((Z log log T)/ log T) and
∑Z

i=1 Hk(Xi).

(a) Case O((log log T)/ log T) ≥∑Z
i=1 Hk(Xi):

Then the ratio is at most O((1 + δ)(log log T)/ log T), for a total space of

O((1+δ)((log log T)/ log T)Sopt(X)), which is O(T (log log T)/ log T) since

O((log log T)/ log T) ≥∑Z
i=1 Hk(Xi) > O(δ).

(b) Case O((log log T)/ log T) <
∑Z

i=1 Hk(Xi):

Then the ratio is

≤ O

(
1

1− δ
)

= O(1 + δ)

for a single one of the c partitions, or O (1 + δ) total times Sopt(X, δ),

which is O(Sopt(X)) since δ < 1− Ω(1).

The final bound is O (max {δT, Sopt(X, δ), T (log log T)/ log T}) total space.

As a direct consequence of Lemma 5.2(iv) and Theorem 5.4 we have the fol-

lowing corollary:

127

Corollary 4. Consider two sensor outputs X and Y over the same time period.

Let X + Y denote the componentwise sum of these streams over some commutative

semigroup. Then EncLZ78(X + Y) ≤ EncLZ78(X) + EncLZ78(Y) in the empirical

setting.

We have now established EncLZ78(X) in both statistical and empirical settings

(Theorems 5.1 and 5.4 respectively). For future analyses we may also be interested in

the number of nodes (representing words) in the dictionary resulting from the LZ78

compression process, denoted d. Note that due to the nature of the dictionary,

d = O(T/ log T) [FM05], so T = Ω(d log d). Since d log d is the total space needed

to store the compressed string and dictionary, in our context d log d = EncLZ78(X).

5.6 Experimental Results

In order to provide evidence for the effectiveness of our methods, we have

implemented our algorithms and provide an empirical analysis of the performance

of our algorithms. Although our data sets are rather small, they are large enough

to demonstrate the value of local clustering in compression. We consider exper-

imental results on two data sets – a simulated data set consisting of 19 sensors

observing equal-sized portions of a circular highway (simulated using the “intelli-

gent driver” traffic model [Tre10, THH00]) and a data set of hallway observations

from the Mitsubishi Electronic Research Laboratories (MERL) consisting of 213

sensors [WILW07]. Both of these data sets contain one count per second, represent-

ing the number of cars or people, respectively, within the sensor region during that

128

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

H
(X
,Y
) /
 H
(X
) +

 H
(Y
)

Neighbor Number

Simulated Data
Neighbor Number vs. Entropy RaBo

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

H
(X
,Y
) /
 H
(X
) +

 H
(Y
)

Neighbor Number

MERL Dataset
Neighbor Number vs. Entropy RaAo

Figure 5.1: A comparison of neighbor numbers and an entropy ratio indicating

locality for 10 days of data. Left : Simulated data. Right : MERL hallway data.

second. For the MERL data set, these counts were derived from activation times

(given by epoch time stamps) by considering each sensor activation to contribute

a count of one to the associated sensor region for that second. For the rest of this

section, we consider the assumption of m-locality and the quality of the compres-

sion algorithm presented in Chapter 4 in the context of the simulated data and the

collected hallway movement data.

We examine the assumption that the sensor systems are m-local, by consider-

ing the entropy relationship of a single sensor stream with that of its mth neighbor,

for increasing values of m. Specifically, we consider the entropy ratio, the ratio of

the pairwise joint empirical entropy (for k = 4) of the two sensors to the sum of

their individual entropies for 10 days of data. This value can range from 0.5 to 1.0,

and is low when two sensor outputs are statistically dependent and high when they

129

are close to independent. As shown in Figure 5.6, both the simulated data and the

MERL data set have clear local neighborhoods where the entropy ratio is low, and

as the neighbor number increases so does the entropy ratio. Our results show that,

in both data sets, there is strong evidence in support of the underlying hypothesis

of our framework, namely that nearby sensors have much lower joint entropy than

distant ones. Thus, joint compression of local groups will achieve better compression

rates.

Recall that in Chapter 4 we proved that PartitionCompress creates c = O(1 +

12O(1)) partitions (c = 1 + 12d for points in Rd) and that PartitionCompress com-

presses the sensor system to within c times the optimal joint entropy bound. This

constant is also hidden in the space bounds proven in Section 5.5. For the simulated

data, when considered over all possible values of m, c ranged from 1 to 4 with a

median value of 3. For the MERL data set, when considered over values of m from

1 to 50, c ranged from 3 to 6 with a median value of 5. In comparison, the worst

case bound gives a value of c = 145 for two-dimensional space. Thus, c is shown

in practice to be much less than the worst case bound, and the compressed size of

the data achieved by PartitionCompress is correspondingly only a small factor away

from the optimal.

130

Chapter 6

Spatio-temporal Range Searching
Over Compressed Kinetic Sensor
Data

In Chapters 4 and 5 we introduced an algorithm which, given a set of sensor

observations, losslessly compresses these data to a size that is within a constant

factor of the asymptotically optimal joint entropy bound. In this chapter we present

an efficient algorithm for answering spatio-temporal range queries. Our algorithm

operates on a compressed representation of the data, without the need to decompress

it. We analyze the efficiency of our algorithm in terms of a natural measure of

information content, the joint entropy of the sensor outputs. We show that with

space roughly equal to joint entropy, queries can be answered in time that is roughly

logarithmic in joint entropy. In addition, we show experimentally that on real-world

data our range searching structures use less space and have faster query times than

the naive versions. These results represent the first solutions to range searching

problems over compressed kinetic sensor data.

131

6.1 Introduction

The vast quantities of kinetic sensor data recorded necessitate compression of

the sensor observations, yet analyses of these observations is desirable. Ideally, such

analyses should operate over the compressed data without the need to decompress

it. In order to perform statistical analyses of the data, it is often desirable that

retrieval queries be supported. In this chapter, we present the first data structure

and algorithms for answering range searching queries over compressed data streams

arising from large sensor networks.

In Chapters 4 and 5, we presented an algorithm for losslessly compressing

kinetic sensor data and a framework for analyzing its performance. We assume

that we are given a set of sensors, which are at fixed locations in a space of con-

stant dimension (our results apply generally to metric spaces of constant doubling

dimension [KL04].) These sensors monitor the movement of a number of kinetic

objects. Each sensor monitors an associated region of space, and at regular time

steps it records an occupancy count of the number of objects passing through its

region. Over time, each sensor produces a string of occupancy counts; the problem

considered in Chapter 4 is how to compress all these strings.

In order to query observed sensor data, which ranges over time and space,

we need to consider both temporal and spatial queries. Temporal range queries

are given a time interval and return an aggregation of the observations over that

interval. Spatial range queries are given some region of space (e.g., a rectangle,

sphere, or halfplane) and return an aggregation of the observations within that

132

region. Spatio-temporal range queries generalize these by returning an aggregation

restricted by both a temporal and a spatial range. For example, a spatio-temporal

range query might return the sum of the observed object counts within a spherical

range of sensors over a given time period. We assume that occupancy counts are

taken from a commutative semigroup of fixed size, and the result is a semigroup sum

over the range. There are many different data structures for range searching (on

uncompressed data) depending on the properties of the underlying space, the nature

of the ranges, properties of the semigroup, and whether approximation is allowed

[AE98,Mat94]. One of the fundamental hierarchical structures, on which much other

work has been based, is the quadtree, a data structure that divides the space into

nested rectangular regions [Sam84]. The net-tree is a data structure similar in spirit,

but for which the fundamental unit is the ball instead of the rectangle [HPM06].

(For more information about range searching, see Chapter 2.6.)

We present data structures for storing compressed sensor data and algorithms

for performing spatio-temporal range queries over these data. We analyze the quality

of these range searching algorithms in terms of both time and space by considering

the information content of the set of sensor outputs. There are two well-known ways

in which to define the information content of a string, classical statistical (Shannon)

entropy and empirical entropy. Statistical entropy [Sha48] is defined under the

assumption that the source X is drawn from a stationary, ergodic random process.

The normalized statistical entropy, denoted H(X), provides a lower bound on the

number of bits needed to encode a character of X. In contrast, the empirical entropy

[KM99, Man01], denoted Hk(X), while similar in spirit to the statistical entropy,

133

assumes no underlying random process and relies only on the observed string and

the context of the most recent k characters. These definitions and distinctions are

discussed in more detail in Chapter 2.4.

Previously, retrieval over compressed text (without relying on decompression)

has been studied in the context of strings [ABFC96,FM05,FV07,GN06] and XML

files [FLMM06]. For example, Ferragina and Venturini [FV07] show that it is pos-

sible to retrieve a substring (indexed by start and end times) in the compressed

text with query time equal to O(1 + `
log T

) where ` is the length of the substring

and T is the length of the string X. Their space requirement is T · Hk(X) + o(T)

bits. Their data structure allows substring queries, which are very different from

semigroup range searching queries, which we consider here. More information about

compressed text indexing can be found in Chapter 2.5.

Although here we will present data structures that operate in main memory,

for the large data sets generated by sensor networks it may also be useful to consider

Input/Output (I/O) efficient structures. Since the data structures described here are

based on simple, practical structures, modifications to I/O-efficient versions should

be straightforwardly based on known I/O-efficient equivalents. Specifically, the tem-

poral structure described could be modified to be based on an underlying I/O-

efficient compressed text structure [CHSV10] and combined with a spatio-temporal

structure modified to be based on an I/O-efficient kd-tree [PAAV03,Rob81].

134

Bounds for Range Searching

Temporal Spatio-temporal

Preprocessing time O(Enc(X)) O(Enc(X))

Query time O(log T) O(((1/εd−1) + logS) log T)

Space O(Enc(X)) O(Enc(X) logS)

Table 6.1: Time and space bounds for temporal range searching and ε-approximate

spatio-temporal range searching for fat convex ranges in Rd. S is the number of

sensors in the network, T is the length of the observation period, and Enc(X)

and Enc(X) denote the sizes of the compressed representations for single sensor

stream (for temporal range searching) and sensor system (for spatio-temporal range

searching), respectively.

6.1.1 Contributions

In this chapter we present the first range query results over compressed kinetic

sensor data. Specifically, we consider the problems of temporal range searching and

spatio-temporal range searching for fat convex ranges (e.g. spheres, rectangles with

low aspect ratio, etc. [AM00]).

As mentioned earlier, we analyze our algorithms in terms of the joint entropy

of the sensor outputs. The preprocessing makes only one pass over the compressed

data, and thus it can be performed as the data are collected. The query bounds are

logarithmic in the input size. The space bounds, given in bits, match the entropy

lower bound up to constant factors. Specific bounds are given in Table 6.1. The

135

temporal range query data structures and associated bounds are discussed more

specifically in Section 6.2 and the spatio-temporal results are discussed in Section 6.3.

In addition to theoretical results, we present experimental evaluation of our

temporal range searching structure. These results show that, in addition to being

theoretically efficient, our data structure offers a roughly 50-fold improvement in

space. These improvements increase as the data sets become larger. (See Section

6.4.)

Both our temporal and spatio-temporal data structures are quite practical, be-

ing based on very simple data structures (tries, binary trees, and quadtrees, in par-

ticular). The temporal range searching data structure relies on the trie created when

compressing the data together with an annotated binary tree. The spatio-temporal

range searching data structure relies on modifications to an existing quadtree-based

data structure used for answering approximate range search queries as well as the

temporal range searching solution. The use of these partition-tree based structures

requires storage of an aggregated version of the encoded data at each level of the

tree, and we show that this only increases the space used by a factor logarithmic in

the number of sensors.

6.2 Temporal Range Searching

In this section we describe a data structure that answers temporal range search-

ing queries over a single compressed sensor stream. Let X be a sequence of sensor

counts over time period [1, T], which will be compressed and preprocessed into a

136

data structure so that given any temporal range [t0, t1] ∈ [1, T], the aggregated

count over that time period can be calculated efficiently. We assume that the in-

dividual sensor counts are drawn from a semigroup, and the sum is taken over this

semigroup. The space used by the data structure (in bits) will be asymptotically

equal to that of the compressed string, and the query time will be logarithmic in T .

Here is the main result of this section. Recall that, given string X, Enc(X) denotes

the length of the compressed encoding of X.

Theorem 6.1. There exists a temporal range searching data structure, which given

string X over a time period of length T , can be built in time O(Enc(X)), achieves

query time O(log T), and uses space O(Enc(X)) bits.

The remainder of this section is devoted to proving this theorem. In Section

6.2.1 we consider the simpler special case where the semigroup is in fact a group,

which means that both addition and subtraction of weights are allowed. In Sec-

tion 6.2.2, we consider the general semigroup case, where only addition is allowed.

6.2.1 Group Setting

We begin by describing the preprocessing for our data structure in the group

context, where subtraction of counts is allowed. First, the given sequence X is

compressed using the LZ78 compression algorithm and the standard accompanying

trie (also known as a dictionary) containing nodes that represent words is created

[ZL78]. We begin with a short overview of this algorithm. LZ78 scans over the

input, putting characters into a trie so that each edge in the trie represents a single

137

character. As the string is scanned from beginning to end, the prefix is looked up

in the trie and the most recent character is added to that path in the trie. The

resulting word is added to the compressed version of the string by simply storing a

pointer to the bottom most node of the path in the dictionary. Let d be the number

of words in the dictionary. Each word in the dictionary (possibly excepting the last)

is used in the compressed version of the string exactly once. In addition, each word

in the dictionary was generated only after all prefixes had previously been added, so

the trie is prefix-complete [FM05]. We will make use of the fact, proved in Chapter

5, that d log d = Enc(X).

Let us now discuss our preprocessing of the stream X. It involves two phases.

The first takes place during the single scan through the input. The data are com-

pressed using LZ78 compression, the associated trie is created, and pointers to word

endings (called anchor points) are stored. Additionally, the aggregated value of

each word (e.g. the sum of its component counts, or the word sum) is added to the

associated node in the dictionary. This value can be found by adding the count at

the current node to its parent’s stored aggregated value as each letter is added to

an existing word in the trie. This phase takes time O(T) and we will refer to the

result of this phase as the compressed form of the input. Here, we briefly present

an example of this initial preprocessing step for X = “12112312,” with aggregation

type a sum of counts. An accompanying trie is shown in Figure 6.1. The first word

found while scanning through the input and entered into the trie as part of the LZ78

compression algorithm is “1” which has associated anchor point $0 and stored word

count sum of 1. Similarly, the next word discovered is “2” with associated anchor

138

1

1 2

2

3

$0 1

$2 2 $4 3

$1 2

$3 5

$0 1 1

anchor time aggregated
Key:

sum

$2 3 2

$3 5 10

$4 7 3

$1 2 13

Figure 6.1: Left: LZ78 trie annotated with associated anchor points and word sums

for a single sensor with observation string “12112312”. Considered inline, the string with

anchor points as breaks between the words becomes 1 $0 2 $1 11 $2 23 $3 12 $4. Right: The

corresponding binary search tree based on word start times that also contains aggregated

sums for the words contained in each node’s subtree. The anchor points are also sorted by

the word start times (in the order of their indices) and the start times are stored separately

with the anchors so that $0 is associated with start time 1, $1 is associated with start time

2, $2 is associated with start time 3, and so on until $4 is associated with start time 7.

Thus, a temporal range [3, 7] would include parts of the words with anchor points $2, $3,

and $4.

point $1 and word sum 2. The next word is “11” with anchor point $2 and word

sum 1 + 1 = 2, and so on until the word “12” ending at anchor point $4 with word

sum 2 + 3 = 5. LZ78 outputs a space-efficient encoding of this trie, but for our

purposes it is not necessary to understand the actual encoding. See Figure 6.1 for

an example.

The second phase, which is the one we will analyze for its additional non-

compression related time, consists of creating a binary search tree over the anchor

points and initializing auxiliary data structures. Building a binary search tree over

139

the anchor points (stored already sorted by word start time) requires O(d) time,

since there are d words and each has one associated anchor point. Additionally, we

create an aggregation tree over the aggregate word values, so that aggregate values

of consecutive words can be easily found when considering substrings. This takes

time O(d) when created as an annotation to the existing binary search tree. Finally,

we will later need access to a level ancestor data structure, which can be built in

O(d) time [BFC04].

Lemma 6.1. Assuming that the input is given in compressed form, temporal range

searching takes preprocessing time O(d) = O(Enc(X)).

Next we describe query processing. (Here, we will give some examples. The

more precise explanation can be found in the proof of Lemma 6.2.) Each temporal

query can be categorized as either internal or overlapping depending on whether the

query interval overlaps one word or multiple words, respectively. Internal queries

implicitly divide a word into a prefix, query region, and suffix. For example, in

Figure 1, consider the query [5, 5], which effectively asks for the value of the fifth

character of the string. This query overlaps the first character of the substring “23”,

and therefore it is an internal query. In this case, the prefix is null (since there are

not characters of the substring preceding the query), the query region consists of

“2”, and the suffix consists of the remainder of the string, namely “3”. Overlapping

queries consist of a suffix, one or more complete words, and a prefix of the trailing

word. For example, in Figure 6.1, the overlapping query [4, 7], corresponding to the

substring “1231,” consists of the suffix “1” of the word “11,” all of the word “23,”

140

and the prefix “1” of word “12.”

Since the trie is prefix-complete, all prefix aggregations are stored in our an-

notated trie and can be retrieved in O(1) time using these annotations and the

level-ancestor data structure. Entire word aggregate values can be retrieved as a

group using the annotated binary search tree created over the aggregate word val-

ues. For example, in Figure 6.1, the aggregate sum of the substring “112312,” with

temporal range [3, 8] and consisting of the words with anchor points $2, $3, and $4,

can be easily found to be 10 by a look-up in the binary search tree. Finally, suffix

values can be retrieved by finding the complementary prefix value and subtracting

from the total associated with the entire word. For example, the suffix sum of 1

indicated by the temporal range [4, 4] in Figure 6.1 can be retrieved by subtracting

the value 1 associated with $0 from the sum of 2 associated with $2. Using these

basic retrieval systems, internal queries can be found by subtracting the prefix and

suffix values from the word total and overlapping queries can be determined by

adding the suffix, complete word sums, and prefix values.

Lemma 6.2. The query time for temporal range searching in the group setting is

O(log d) = O(log T).

Proof. The compressed text is modified to be of the form W1$W2$. . .Wd$ where

{W1, ...,Wd} are the words in the dictionary and $ is a character not in the original

alphabet. Each $ is associated with the Wi preceding it, and the location of that $,

or anchor point, is added as an annotation to each dictionary word. (These manip-

ulations were introduced by Ferragina and Manzini [FM05], and though pointers to

141

the beginning of words would suffice for our application, we use the insertion of $’s

for notational convenience.) Since each dictionary word appears exactly once in the

compressed text, each word has a single associated anchor point.

When given a temporal range [t0, t1], the first step is to locate the anchor

points $0 and $1 such that $0 ≤ t0 and $1 ≥ t1, and there are no other $′0 or $′1 such

that $0 < $′0 ≤ t0 and $1 > $′1 ≥ t1. This is performed by a binary search through

the sorted list of anchor points, which takes time O(log d). We say that the result is

overlapping , if there exists some anchor between $0 and $1 in the compressed text,

and otherwise it is internal . We handle these as separate cases.

Overlapping Case: First sum the counts for all words that are completely

contained within the given temporal range. There can be no more than d of these,

so this summation takes at most d time. Next, the count of the suffix of the requested

range, which is the prefix of the word that starts just after t1 and ends at $1, is added

to the sum. By prefix-completeness, this prefix is stored on its own in the trie. The

prefix count can be efficiently retrieved in O(1) time, given a pointer to the leaf

node associated with $1, the length of the prefix, and the data structure of [BFC04]

for answering level-ancestor queries.

Finally, the prefix of the requested range, which is the suffix of the word w0

beginning at $0, is added to complete the sum. The suffix count is calculated by

first looking up the prefix of w0 that ends just before t0, and subtracting its count

from w0’s total count. This prefix count is computed exactly as in the previous

paragraph.

Internal Case: The dictionary word is subdivided into three non-overlapping

142

sections based on the range query; the prefix, the query region, and the suffix.

Due to prefix-completeness, the count for the prefix is recorded in the annotated

dictionary. It can be retrieved in O(1) time, as above, using the level ancestor algo-

rithm [BFC04]. Similarly, the count for the word resulting from the concatenation

of the prefix and the query region is also in the dictionary and can be retrieved in

O(1) time. Subtracting this count from the total word count results in the count for

the suffix. Subtracting the suffix and prefix counts from the total word count gives

the count for the query region, as desired.

The query time, once given a specific temporal range, is O(d+ log d). In order

to reduce the query time, we supplement the data structure for the overlapping

case so that d words are never summed individually, but rather are looked up in an

aggregation tree (of size O(d)) from which we use the largest component subtrees.

The aggregation tree is a binary tree containing word sums as leaf nodes and aggre-

gate values of all words in the associated subtree for each internal node. Using this

data structure, the number of summed subtrees is O(log d). With this modification,

the running time is dominated by the O(log d) time needed to lookup which word(s)

overlap the given temporal query using a binary search over the sorted anchor points,

and the O(log d) complete words that might be summed using the aggregation tree

for overlapping queries.

Finally, we consider the total number of bits of space used in this process.

The storage of the anchor points requires space d and the annotated dictionary

takes space d. Under our assumption that the group is of fixed size, the largest sum

143

that can be achieved during this process is O(T). These sums annotate dictionary

words, so the modified dictionary takes space at most O(d log T), which is O(d log d)

since T = O(d2). In addition, we make use of an auxiliary data structure to solve

the level ancestor problem [BFC04]. This data structure requires storage only of

the tree, O(d) pointers to nodes in the tree, and a table of O(d) encoded subtrees

that each take O(log d) space. Thus, the total size required by this auxiliary data

structure is also O(d log d).

Lemma 6.3. The total space in bits required for our temporal range structure in

the group setting is O(d log d) = O(Enc(X)).

6.2.2 Semigroup Setting

The results from the previous section hold only for group operations. Specif-

ically, they do not hold for queries such as “max” and “min.” In this section we

generalize these results to the semigroup setting. In order to handle semigroup op-

erations, for a substring in a given temporal range we need to be able to return the

aggregated result in O(log d) time without relying on subtraction. The additions

explained here are only used to handle the remaining suffix needed for the overlap-

ping case or for lookup in the internal case. In other words, we will only be using

this auxiliary data structure when considering queries over time periods within a

single word.

We base our auxiliary data structure on the Sleator and Tarjan link-cut tree

[ST83]. They annotate edges along the tree to be either solid or dashed so that

144

1 2 3 4 6$0 $1 $2 $3 $4 $5 $6

($0,$1) 1

($0,$3) 6

($3,$4) 4

($2,$3) 3

($4,$5) 5

($5,$6) 6

($0,$1) 1

($1,$2) 2

($2,$3) 3

($4,$6) 11

($4,$5) 5

($0,$6) 21

edge cost

subpath cost

Key:

5

Figure 6.2: A solid path between anchors $0 and $6 along sensor output string

“123456” with associated binary tree. Each node of the binary tree is annotated

with its associated edge cost and its associated subpath cost. The search paths when

finding the cost of the subpath between anchors $3 and $6 is shown with a dotted

line. The cost of this subpath is found to be 0 for the path from $3 plus 11 for the

path from $6 plus 4 for least common ancestor, for a total cost of 15.

any path from the root to a leaf node has O(log d) dashed edges and any solid path

may have as many as O(d) edges. Each solid path is additionally annotated with

a binary tree, so that any node may still be reached through a path of O(log d)

edges. This binary tree’s nodes represent edges and are annotated with their edge’s

cost. We augment the link-cut tree to additionally include the aggregated cost of

the subpath represented by the node for each node in the binary trees associated

with solid paths (see Figure 6.2). With these additions, the data structure still takes

space O(d log d).

To retrieve an aggregated value when given pointers to string endpoints that

145

are fully contained within a solid tree path, start at each endpoint’s corresponding

leaf node and traverse the path to their least common ancestor. While traversing

from the left endpoint, at each parent node that is not the least common ancestor

of the endpoints, if the path up the tree goes from a left child to the parent, add the

subpath cost stored at the parent to the running total. If the path up the tree goes

from a right child to the parent, no cost is added in that step. Proceed symmetrically

for the right endpoint. Sum the resulting paths and the least common ancestor’s

edge cost. This step takes time O(log d), or the depth of a solid path’s binary tree.

For an example, see Figure 6.2.

In order to combine solid paths with dashed paths, recall that since we only

need to handle queries within a single word in this section, both endpoints of the

substring must be on a single path to the root. We traverse from the given bottom

most pointer up the tree until we reach the corresponding ending pointer. The cost

of all dashed edges on this path are added to the sum, while solid path segments are

handled as described above and the resulting sum is added to the total. There are at

most blog dc dashed edges on the path from any vertex to the root if we make solid

vs. dashed edge choices based on the number of nodes in vertex subtrees [ST83],

and traversing any solid path segment takes time in the depth of the binary tree, so

this step takes time O(log d).

Finally, note that the endpoint nodes can be identified in the tree by consid-

ering t0 − $0 and $1 − t1 since the queries are along a single path that is indicated

by $0 and $1. Annotate the leaf nodes in the solid path binary trees with their

numeral positions in the path. Combining the navigation through these trees with

146

following the dashed edges along the identified path, the endpoints of the substring

can be found in O(log d) time. In total, modifying the query procedures to handle

semigroup operations maintains the query time of O(log d).

Lemma 6.4. The query time for temporal range searching in the semigroup setting

is O(log d) = O(log T).

6.3 Spatio-temporal Range Searching

In this section we consider how to extend the results of the previous section on

temporal range searching on a single string to range searching for a sensor system,

in which queries include both the spatial and temporal components of the data. We

assume that we are given an m-local sensor system with S sensors. Each sensor is

identified with its location pi in space and a stream Xi of occupancy counts over

some common time interval [1, T]. We assume that the sensors reside in real d-

dimensional space, Rd, where d is a constant. Our approach can be generalized to

metric spaces with constant doubling dimension. We model each sensor’s location

as a point, and the answer to a range query consists of the sensors whose associated

point lies within the query region. Let P and X denote the sets of sensor locations

and observation streams, respectively.

Recall from the previous chapter that Encalg(X) denotes the length of the

encoded set of sensor outputs X, where alg specifies the string compressor used by

the compression algorithm of Chapter 4. Since the LZ78 algorithm will suffice for

our purposes, let Enc(X) = EncLZ78(X). In Chapter 5, it is shown that Enc(X)

147

is on the order of the optimal space bound when analyzed in terms of either the

statistical or empirical entropy. (A slightly weaker form of independence, called δ-

independence, is also considered and it is shown that the bounds hold approximately

under this weaker definition.)

Define a spatio-temporal range query to be a pair (Q, [t0, t1]) consisting of a

geometric query range Q from some space Q of allowable ranges (e.g., rectangles,

balls, or halfspaces) and a time interval [t0, t1] ⊆ [1, T]. The problem is to compute

the sum of the occupancy counts of the sensors whose locations lie within the range,

that is, P ∩ Q, over the given time interval. In general, the occupancy counts are

assumed to be drawn from a commutative semigroup, and the sum is taken over

this semigroup. The remainder of this section is devoted to proving the following

theorem, which shows that approximate spherical spatio-temporal range queries can

be answered efficiently. In fact, these techniques hold for all fat convex ranges, but

for simplicity of presentation we will limit ourselves to the spherical case here.

Theorem 6.2. There exists a data structure for answering ε-approximate spatio-

temporal spherical range queries for an S-element m-local sensor system X in Rd

for all sufficiently long time intervals T with preprocessing time O(Enc(X)), query

time O(((1/εd−1) + logS) log T), and space O(Enc(X) logS) bits.

Rather than considering a particular range searching problem, we will show

that the above problem can be reduced to a generalization of classical range search-

ing. To motivate this reduction, we recall that the compression algorithm presented

in Chapter 4 groups sensors into clusters, and the sensor outputs within each clus-

148

ter are then compressed jointly. In order to answer range queries efficiently, it will

be necessary to classify each such cluster as lying entirely inside the range, outside

the range, or overlapping the range’s boundary. In the last case, we will need to

further investigate the cluster’s internal structure. Efficiency therefore is depen-

dent on the number of clusters that overlap the range’s boundary. We will exploit

spatial properties of the clusters as defined in Chapter 4 to achieve this efficiency.

To encapsulate this notion abstractly, we introduce the problem of range searching

over clumps , in which the points are replaced by balls having certain separation

properties. Eventually, we will show how to adapt the BBD-tree structure [AM00]

to answer approximate range queries in this context.

Given any metric space of constant dimension, a set of clumps is defined to be

a finite set C of balls that satisfies the following packing property for some constant γ

(depending possibly on dimension): Given any metric ball b of radius r, the number

of clumps of C of radius r′ that have a nonempty intersection with b is at most

O((1 + (r/r′))γ). Given a range shape Q, a clump may either lie entirely within Q,

entirely outside Q, or may intersect the boundary of Q. In the last case, we say that

the clump is stabbed by Q. See Figure 6.3 for examples of these cases.

The relevance of the notion of clumps to our setting is established in the

following lemma. The lemma states that the clusters of sensors within a single

partition created by the PartitionCompress algorithm of Chapter 4, when associated

with a bounding ball, form a set of clumps. The PartitionCompress algorithm

partitions the sensor point set P into a constant number of groups, P1, . . . , Pc (where

c depends only on the dimension of the space). Each group Pi is further partitioned

149

Figure 6.3: A set of clumps and a spherical range. The query range is indicated by

the larger disc. The clumps are indicated by smaller balls and are shaded based on their

membership in one of three groups; clumps that are outside of the range are light grey,

clumps that are stabbed by the range are grey, and clumps that are entirely included in

the given range are dark grey.

into subsets, called clusters, such that if two sensors are in different clusters then

their outputs are independent of each other. Given a ball b and real ϕ > 0, let

ϕ b denote the ball concentric with b whose radius is a factor of ϕ times the radius

of b. The proof of the following lemma relies on the observation that 1
2
b1, ...,

1
2
bh

are pairwise disjoint. This is established based on the geometric properties of the

repetitive partitioning process of the PartitionCompress algorithm. See Figure 6.4

for an accompanying diagram.

Lemma 6.5. Given a point set P , let P ′ ⊆ P be any of the groups generated by the

PartitionCompress algorithm, and let P ′1, . . . , P
′
h denote the associated set of clusters

for this group. Then there exists a set of balls C = {b1, . . . , bh} that form a set of

clumps such that P ′i ⊆ bi.

150

pipj

bi

bj

Figure 6.4: Two clumps bi and bj from a partition P ′ generated by PartitionCompress.

Points represent sensor locations. The clump bi centered at pi contains cluster P ′i repre-

sented by the solid points. The clump bj centered at pj contains cluster P ′j represented

by the points marked with a cross. The shaded disc centered at pi is 1
2bi and the shaded

disc centered at pj is 1
2bj .

Proof. Let us first recall how the set P ′ is formed by the PartitionCompress algo-

rithm. Initially all the points of P are unmarked. The algorithm repeatedly selects

the unmarked point pi ∈ P that has the smallest m-nearest neighbor ball (with

respect to the entire point set P). Let bi denote this ball and let P ′i = P ∩ bi. These

points are removed from P , and all the points of P lying within 3bi of pi are marked.

This process is repeated until no unmarked point of P remains. Let h denote the

number of iterations until termination, and let C denote the resulting set of balls.

Let P ′ = P ′1 ∪ . . . ∪ P ′h. (This produces one group. To form the next group, the

process is then applied recursively to the points of P that were removed. This is all

repeated until every point of P has been assigned to some group. See Chapter 4 for

further details.)

We assert that, for 1 ≤ i ≤ h, the balls 1
2
b1, . . . ,

1
2
bh are pairwise disjoint.

Consider any pair i, j, where 1 ≤ i < j ≤ h. Let ri and rj denote the radii

151

of bi and bj, and let pi and pj denote their respective centers. Since when pi is

being processed, all the points lying within distance 3ri are marked, and since only

unmarked points are chosen as centers of the balls, we have ‖pipj‖ ≥ 3ri. Also,

since the ball of radius ‖pipj‖ + ri centered at pj contains the m-nearest neighbor

ball of pi, it follows that this ball contains strictly more than m points, from which

we conclude that rj ≤ ‖pipj‖+ ri. Combining these observations we have

ri
2

+
rj
2
≤ 1

2
(ri + (‖pipj‖+ ri)) ≤ 1

2
(‖pipj‖+ 2ri)

≤ 1

2

(
‖pipj‖+

2

3
‖pipj‖

)
< ‖pipj‖.

Because the sum of their radii is less than the distance between their centers, it

follows that the balls 1
2
bi and 1

2
bj are pairwise disjoint, and this completes the proof

of the assertion.

To see that C is a set of clumps, consider any positive real r and r′. Let b

be any ball of radius r, and let C ′ denote the subset of balls of C whose radius

is at least r′. By the above assertion, the centers of any two balls of C ′ must be

at distance at least r′ from each other. By basic properties of doubling spaces, it

follows that b can be covered by O((1 + r/(r′/2))d) balls of radius r′/2. Clearly,

each ball of this set can contain the center of at most one ball of C ′. Therefore,

|C ′| = O((1 + (2r/r′))d) = O((1 + (r/r′))d+1). Setting γ = d + 1 completes the

proof.

We define the problem of range searching among clumps as follows: Given a

space Q of allowable ranges and a set C of clumps, each of which is associated with

a numeric weight from some commutative semigroup, preprocess the clumps into a

152

collection of subsets, called generators, such that given any query range Q ∈ Q, it is

possible to report (1) a subset of these generators that form a disjoint cover of the

clumps lying wholly within Q and (2) the subset of clumps that Q stabs. The total

space requirements of a data structure for the range searching problem over clumps

is the sum of space needed to represent the generators and the clumps, together

with the space needed for storing the index structure needed to answer queries. The

query time includes number of generators and stabbed clumps returned, plus the

time to compute them.

Many data structures used in range searching are based on partition trees

[AE98]. In such data structures, space is recursively subdivided into regions and

the points are partitioned among these regions, until each region contains a single

point. Each node of the tree is associated with a generator corresponding to the

elements of the point set that lie in the leaves descended from this node. Our main

result shows that, given a partition-tree based solution to the problem of range-

searching among clumps, we can use such a structure to answer spatio-temporal

range queries. This is done by adding an auxiliary data structure to each of the

nodes of the tree to answer the temporal queries.

Lemma 6.6. Suppose that we have a partition-tree based data structure that, given a

set C of n clumps, can answer range queries over a query space Q with preprocessing

time pp(n), query time qt(n), space sp(n) bits, and has height h(n). Then there

exists a data structure that can answer spatio-temporal range queries for an m-local

sensor system X of size S over a range space Q and time interval of length T with

153

preprocessing time O(h(S) · pp(S) + Enc(X)), query time O(qt(S) · log T), and space

O(sp(S) + h(S) · Enc(X)) bits.

Proof. We first run the PartitionCompress algorithm on the point set P of the S

sensor locations. Recall that this partitions P into O(1) groups, which by Lemma 6.5

can each be represented by a collection of clumps. We build a range searching

structures for each of the resulting set of clumps. We will answer each query by

invoking the range search separately on each of the individual structures, and then

summing the results. Henceforth, we consider just the processing of a single group,

which we will denote by P ′.

We augment the clump range-search structure for P ′ by building one temporal

range search structure for each of the individual clumps of P ′ as well as for each of

the generators, that is, for each of the internal nodes of the associated partition tree.

First, recall that each clump consists of the sensor streams for some number m′ ≤ m

of sensors. For each clump we treat the data from this clump as a time stream whose

elements are m′-element vectors, where the ith element of the vector is the count of

the ith sensor. We compute a temporal range search data structure for the associated

stream of vectors (where the semigroup sum is extended to the semigroup sum over

vectors). Next, for each node u of the tree, let gu denote the associated generator

consisting of the points {p1, . . . , pf} stored in the leaves that are descended from u.

Let {X1, . . . , Xf} denote the corresponding set of the sensor streams. Let Xu be

the aggregated stream
∑f

i=1Xi, formed by taking the componentwise sum of the

observations from all f streams. (Unlike the clump case, we collapse all the sensors

154

counts into a single sum, rather than creating an f -element vector. This is because

f may generally be as large as the total number of sensors.) We build a temporal

range searching structure for Xu, and associate this auxiliary tree with u.

Next, let us consider how to answer a given spatio-temporal query 〈Q, [t0, t1]〉

over P ′. We first apply the range searching data structure for Q over the set of

clumps associated with P ′. Recall that this returns (1) a subset of generators lying

within Q and (2) the clumps that are stabbed by Q. The former set may be assumed

to be associated with a set of internal nodes of the tree and the latter with a set of

leaf nodes of the tree. For each node u of (1), we invoke the corresponding auxiliary

temporal data structure over the aggregated stream Xu and the time interval [t0, t1],

and include the resulting semigroup sum in the final total. For each each leaf node

of (2), we invoke the associated auxiliary temporal range search structure for time

interval [t0, t1] to determine the semigroup vector sum over this interval. For each

sensor of the clump we determine whether it lies within Q, and if so, we include its

component of the vector sum in the final total.

The space used by the data structure is equal to the total space sp(S) for

the range searching structure over clumps, plus the space needed for the temporal

range search structures for each of the clumps and each of the generators. To bound

this quantity, consider the h(S) levels of the tree. Each of the nodes of this level is

associated with a generator, such that each sensor stream contributes to at most one

node of the level. It can be shown by basic properties of entropy that the entropy

of the componentwise sum of the stream is not greater than the sum of entropies of

the sensor streams at the leaf level, which is at most Enc(X) bits. Summing over

155

h(S) levels yields the desired space bound. Similarly, the preprocessing time of the

data structure is just the preprocessing time needed to build the range searching

structure over clumps, plus the time needed to construct the individual auxiliary

temporal range search structures.

To bound the total query time, observe that the query time is dominated by the

time O(qt(S)) to compute the set of nodes whose associated clumps and generators

form the answer to the query, together with the O(log T) time from Lemma 6.1 to

access each auxiliary data structure to answer the temporal range queries. This

completes the proof.

We claim that many standard partition-tree-based methods for approximate

range searching can be adapted to perform range searching among clumps. Observe

that we can generalize the notion of ε-approximate range searching to approximate

range searching over clumps. To do so we define two ranges Q− and Q+, representing

the inner and outer approximate ranges. For example, in the case of spherical range

searching, given a query ball Q, we define Q− = Q and Q+ to be the ball concentric

with Q but whose radius is scaled relative to Q’s radius by a factor of (1 + ε). (See

Arya and Mount [AM00] for further details.) If a generator lies entirely within Q+

its points may be counted as lying within the approximate range, if it lies entirely

outside of Q−, its points may be considered to lie outside the approximate range. A

clump is classified as being stabbed by Q if and only if it has a nonempty intersection

with both Q− and the complement of Q+. It is easy to show that such a clump has

diameter Ω(ε ·diam(Q)) [AM00]. By the packing property of clumps, the number of

156

such clumps is O(1/εγ), where the parameter γ depends only on the dimension of

the space. (It may seem odd to consider approximate range searching in light of our

emphasis on lossless compression. However, the data structures that we will describe

below have the property that the value of ε is specified at query time, and it may

even be that ε = 0. Thus, the data represented by the sensors may be extracted to

any desired degree of precision.) We conclude by remarking that it is relatively easy

to generalize many standard approximate range searching data structures based on

hierarchical partitioning to answer range searching over clumps. We present one

example based on the BBD-tree data structure of [AM00].

Many data structures, such as the range searching algorithm appearing in

[AM00] for approximate spherical range searching, exploit packing properties to

achieve efficiency. Our next result shows that, through a straightforward adaptation

of the algorithm presented there, it is possible to answer such queries in the context

of clumps.

Lemma 6.7. There exists a data structure for answering ε-approximate spherical

range searching queries over a set C of n clumps in Rd with preprocessing time

O(n log n), query time O((1/εd−1) + log n), and space O(n · (prec(C) + log n)) bits,

where prec(C) denotes the maximum number of bits of precision in the geometric

coordinates used to define C.

Proof. Recall from [AM00] and from Chapter 2.6 that a BBD-tree for a set of n

points is type of balanced and compressed quadtree decomposition, in which the

tree has size O(n) and height O(log n). In order to guarantee that the tree has

157

logarithmic depth, in addition to the standard quadtree splitting operations there

is a decomposition operation, called centroid shrinking . Define a quadtree box to be

any axis-parallel hypercube that can be formed by starting with the unit hypercube,

and repeatedly splitting it into 2d congruent subcubes, by passing d axis-parallel

hyperplanes through the center of the cell. Given a quadtree box b, this operation

computes a nested quadtree box b′ ⊆ b such that a constant fraction of the points

of b lie within b′. Corresponding to this operation there is a special node of the

tree, called a shrink node, whose two child nodes are associated with b′ and b \ b′,

respectively. Each node of the tree is naturally associated with a region of space,

called its cell. The cell associated with each node of the BBD tree is either a quadtree

box or the set-theoretic difference of two quadtree boxes, one nested within the other.

(See [AM00] for further details.)

The BBD-tree data structure is generalized to process range searching over

clumps as follows. First, we assume that the sensor points have been scaled so they

lie within a unit hypercube. The center points of the clumps are inserted into the

BBD-tree, just as in [AM00], with the following exception. Let u denote a node of

the clump-based BBD-tree, let q denote the cell associated with u, and let s denote

b’s maximum side length (also called its size). Each clump whose center lies within

q and whose radius lies between s/2 and s is stored in a special leaf node which

is made a child of u. It is easy to establish the invariant that the descendants of

any node whose cell size is s are clumps of radius at most s. By Lemma 6.5, the

number of such leaves per node is O(1). Otherwise, the preprocessing is identical to

that of the BBD-tree. The preprocessing time is essentially the same as that of the

158

BBD-tree, which is O(n log n). The space is equal to the total space needed for the

point coordinates, which is O(n · prec(C)) bits, and the total space needed for the

tree and its pointers, which is O(n log n) bits.

In order to answer a query, we follow essentially the same searching procedure

given in [AM00], but with a few differences. Recall that the algorithm recursively

descends the tree starting at the root. On its arrival at some leaf node u, we test

whether the associated clump lies within Q+ (in which case we include it in the set

of generators lying within Q+) or is stabbed by the annulus Q+ \Q− (in which case

we include it among the stabbed clumps). On arrival at an internal node u, let qu

denote the associated cell and let su denote its size. Since the clumps lying within

u have radius at most su, we check whether qu dilated by su lies entirely within Q+,

and if so we include the associated generator among those lying within the range

query. On the other hand, if the dilation of qu lies outside of Q−, we ignore the

associated generator. If neither of these cases holds, then we recursively apply the

search to the children of u.

By a straightforward adaptation of the packing arguments given in [AM00], it

follows that the number of nodes visited by this algorithm is O((1/εd−1)+log n).

By applying Lemma 6.6 to the above data structure, it follows that we can

answer ε-approximate spherical range searching queries for a sensor system of size S

over a time period of length T with preprocessing time O((S log2 S)+Enc(X)), query

time O(((1/εd−1) + logS) log T), and space O((S · (prec(C) + logS) + Enc(X) logS)

bits, where prec(C) denotes the maximum number of bits of precision in the geomet-

159

ric coordinates used to define C. Under the assumption that T is sufficiently large

that the encoding space dominates over time-invariant quantities, this completes the

proof of Theorem 6.2.

Because the above result relies only on basic packing properties of the BBD-

tree data structure, it is easy to see that this result can be applied to other data

structures for range searching that rely only on such packing properties. Examples

include the BAR-trees [DGK01], the quadtree-based data structure of Chan [Cha98],

quadtree-based solutions to absolute range searching [dFM10], and methods based

on net-tree decompositions in metric spaces of constant doubling dimension [HPM06,

GGN06].

6.4 Experimental Results

In addition to the theoretical analysis of the range searching results presented

here, we evaluated the temporal range searching structure experimentally. Using

a data set provided by the Mitsubishi Electronic Research Laboratory (MERL)

[WILW07] consisting of activation times for sensors located in the hallways of their

building, we analyzed two aspects of our data structure’s performance; space and

time. In short, we found that our data structure was able to use less space than a

naive structure while providing faster query times. In the rest of this section, we

describe the data set and our experimental methods in greater detail. As in the

experiments of Chapter 5, the data set considered here is not particularly large.

Still, we believe that it is useful for a basic understanding of size and query time

160

comparisons.

The MERL data set consists of activation times, representing people moving,

for 213 sensors. These activation times are given with epoch start and end times.

Using these start times, and noting that each activation lasted approximately one

second, we translated these activation times into streams of data for each sensor

in the form described earlier. Each activation is represented by a count of one

and seconds in which no activations were reported are represented by a count of

zero. These streams are associated with sensors whose locations are known and

relationships are shown in a map of the building. Using this map, we create a graph

representation in which neighboring sensors are connected by an edge with weight

one. Sensors observing adjacent areas of the hallway or hallway areas connected by

doors to observed rooms or lounges are considered to be neighboring.

We considered the storage space per sensor data stream for the raw data

(consisting of one value per second) versus the temporal range structure (specifically

the annotated trie) written to a file. The average size taken over all sensors by each

of these methods as it varies based on the number of days (in increments of 10) of

data can be seen in Figure 6.4. We call the ratio between the space used by the raw

data and the space used by the temporal range structure the improvement ratio.

A graph showing the number of days of data considered versus this improvement

ratio is given in Figure 6.4. The improvement ratio increases as the amount of data

increases, ranging from a 14-fold improvement for 1 day to a 66-fold improvement

for 80 days of data. This increase is likely caused by the observation of repeated

patterns; the first observation must be stored in the annotated trie while later

161

0.001

0.01

0.1

1

10

0 20 40 60 80

To
ta
l S
pa

ce
 (i
n
G
Bs
)

Days

Space

Raw Data

Temporal Range
Structure 0

10
20
30
40
50
60
70

0 10 20 30 40 50 60 70 80

Im
pr
ov
em

en
t R

a-
o

Days

Space Improvement

Figure 6.5: Left: The space used by the raw data in comparison to that used by the

temporal range structure shown for varying numbers of days of data. Note that the

size is shown in a logarithmic scale. Right : Space savings shown via a comparison of

the number of days of data versus the ratio between the raw data and the temporal

data structure sizes. As the number of days increase, the space saving increases as

well.

0

10

20

30

40

50

0 50 100 150

A
ve
ra
ge
 Q
ue

ry
 T
im

e

(in
 m

ill
is
ec
on

ds
)

Query Interval Length (in days)

Temporal Query Time

Temporal Range
Structure

Naive Method
0

1

2

3

4

0 50 100 150

Im
pr
ov
em

en
t R

a-
o

Query Interval Length (in days)

Temporal Query Time Improvement

Figure 6.6: Left : Average temporal query times for 100 randomly chosen queries

for each interval length. Query times using the temporal structure for aggregation

over this query interval and using a naive method that simply aggregates one by one

are shown. Right : The improvement ratio of the temporal query times, the naive

time divided by the temporal range structure query time, is shown for each query

interval from the corresponding temporal query times graph.

162

observations can simply extend existing patterns, taking less space.

Query time is considered for varying query interval lengths for 150 days of data

(at 1 day intervals). We compare our temporal range searching method to the naive

method that aggregates by linearly adding each count. Query times do not include

the time to read in the file or, in the case of the temporal range structure, the one-

time preprocessing cost. A graph showing the interval length versus the query time

for each of these methods is given in Figure 6.6. Each query time depicted on the

graph represents the average of 100 randomly chosen queries of the given interval

length. As the interval length increases, the temporal range structure’s improvement

over the naive method increases slightly as well. The improvement ratio (the ratio

of the naive query time to the temporal range structure time) shows that for most

query intervals, the temporal range structure is twice as fast as the naive method

(see Figure 6.6).

163

Chapter 7

Conclusion

In this thesis, I pursued two main avenues of research. First, I explored a

problem within the intersection of robust statistics and algorithms for moving points

from the point of view of the established KDS framework (see Chapter 3). Second,

I developed a new observation-based framework for moving objects and considered

compression and retrieval problems and analysis within that framework (see Chap-

ters 4, 5, and 6).

7.1 Robust Kinetic Data Structures

My first work demonstrated the first kinetic robust approximation algorithm

for the k-center problem with an approximation ratio of (3 + ε) in the discrete

case and (4 + ε) in the absolute case for fixed k. In addition, I gave a (3 + ε)-

approximation algorithm for the static robust k-center problem for fixed k and a

(4 + ε)-approximation algorithm for the kinetic non-robust k-center problem for

arbitrary k. My algorithm is one of the first to tackle the conflict between the

necessarily local conditions required by the kinetic data structures framework to

achieve responsive update rules and globally dependent statistical information.

The KDS algorithm allows for points to change their designation as outliers or

164

inliers over time. When considering traffic detection, outlier flexibility ensures that

cars uncovered by the chosen k centers (cars that are not in traffic) may be covered

at a later time (can get stuck in traffic) and vice versa. The robust kinetic k-center

algorithm presented here can also be modified to handle k-center queries that have

the added anonymity requirement that a given number of points must be served

by a center for it to be added to the k-center solution [MK08]. This anonymity

constraint can be satisfied by modifying the binary search through the hierarchy

to find the appropriate level as presented in Section 3.3.3 so that all logα levels

are searched instead. The set of k centers at the lowest level that satisfy both the

current constraints and this added anonymity constraint are output as representative

for that spanner. This modification will not increase the KDS quality bounds but

will increase the static algorithm runtime to O((log n logα)/ε2d).

7.1.1 Open Problems

Open problems in this area include revisions to the algorithm and/or kinetic

framework to allow more efficient maintenance of global statistical properties under

motion so that algorithms move farther away from their static counterparts and

rarely need to invoke the static version of the algorithm. These modifications might

additionally allow the k-center problem to be considered for arbitrary k. Currently,

the algorithm assumes a fixed k, since allowing k to be arbitrary would yield an

update time of O(k(log n logα)/ε2d) for the kinetic data structure’s responsiveness.

This update time is caused by re-running the static algorithm when changes to the

165

set of centers are suspected. Due to the global nature of the k-center problem and the

sequential incremental nature of our algorithm, small changes to the set of centers

cannot be fixed by local incremental manipulations of the solution. Removing the

restriction on k would require a different, non sequential local solution.

In addition, it would be interesting to remove the dependence on the aspect

ratio from the algorithm’s time bounds. This dependence is due to the structure

of the deformable spanner. Cole, Gottlieb, and Roddity [CG06,GR08] have worked

on a dynamic hierarchical spanner that does not depend on the aspect ratio. Use

of this spanner does not immediately yield a kinetic algorithm with no aspect ratio

dependence. The Cole and Gottlieb [CG06] spanner makes use of path compression

so that trivial spanner paths in which a point appears in multiple levels of the

hierarchy without any children are represented as only the top and bottom of the

path (Cole and Gottlieb call these jumps). However, the robust kinetic k-center

algorithm requires a maintained priority queue for each level containing weights for

each point at the level. Maintaining these priority queues would negate the space

advantages of the spanner’s path compression. Thus a significantly different strategy

is needed to remove the aspect ratio dependence.

More generally, to my knowledge no other robust kinetic data structures prob-

lems have yet been considered. Other robust kinetic clustering problems, such as

the robust k-median problem [CKMN01], remain open, as does the classic robust

statistical problem of the least median-of-squares regression line estimator [Rou84].

The least median of squares estimator fits a line to a set of points by minimizing the

median squared distance between any point and the line. This estimator is robust

166

for any data set containing up to 50 percent outliers [Rou84].

7.2 Observation-based Framework for Objects in Motion

I introduced a sensor-based framework for kinetic data which can handle un-

restricted point motion and only relies on past information. I analyzed the frame-

work’s encoding size and gave a c-approximation algorithm for compressing point

motion as recorded by the framework for a constant c. I also analyzed the framework

from a realistic perspective, considering empirical entropy and a limited notion of

independence.

Based on this framework and analysis, I presented the first spatio-temporal

range searching structure for kinetic sensor data. This structure operates over the

compressed version of the data without the need to decompress it. Preprocessing

time and the data structure’s space, measured in bits, were shown to be on the order

of the encoding size. The query time was shown to be logarithmic in the observed

length of time. Experimental results showed that the space used was at least an

order of magnitude better than the space used by the raw data and that the query

time was less than that of a naive method.

7.2.1 Open Problems

There are many open problems relating to the observation-based framework for

kinetic data presented here. Some involve further work refining the framework itself,

while others consider higher level statistical questions within the given framework.

167

The framework discussed here does not allow for tracking of individual points

through the system; for example, the framework could not be used to determine

which point travelled the farthest distance. This is a side-effect of the choice of dis-

crete monitoring and the efforts towards practicality and robustness. While keeping

these constraints in mind, it would be interesting to consider a tracking model that

allows analysis of individual point properties. It would also be interesting to al-

low the tracking of some points while still monitoring other points discretely. This

would allow for a more practical hybrid approach that could take advantage of all

the information available. For example, scientists tagging fish [POS] could track

those individual fish while not ignoring the surrounding school.

The theoretical and experimental results presented here were analyzed under

main memory assumptions. While I expect much of this analysis to transfer directly

to an I/O-efficient model, new data structures may also be required. For future

work, it would be interesting to extend these analyses to an I/O-efficient model

and conduct experiments using these modified data structures. In addition, the

algorithms given on this framework were stated assuming a central processing node

with global knowledge. It would be interesting to modify these algorithms to operate

in a more distributed manner.

Any statistical analysis considered should operate over the compressed data

without the need to decompress it. I suspect that a lossy compression algorithm

instead of the lossless compression algorithm given by the preliminary work would

greatly increase the efficiency of algorithms based on this framework, so lossy com-

pression algorithms could also be considered and analyzed experimentally. In creat-

168

ing lossy compression algorithms within this observation-based framework it would

be important to consider the domain-specific scientific ramifications of losing some

data.

Open questions include solving global statistical questions on kinetic data us-

ing the observation-based framework, e.g., answering clustering questions, finding

the centerpoint, or finding the point set diameter. More specifically, one interest-

ing open question is developing algorithms to cluster over space and time. I am

interested in the following problem definition with the goal of identifying clusters

that are mutually predictable over space and time. This definition additionally ap-

proximates the location of objects by associating them with the sensor region that

observes them and anonymizes objects by assuming no tracking of specific object

identities from one sensor observation region to the next. Due to the entropy op-

timization problem at the core of this definition, this definition captures clusters

that are co-located by both space and time (e.g. a flock of birds), clusters that

are temporally co-located, but spatially distant (e.g. rush hour traffic patterns),

and clusters that are spatially co-located but temporally separated (e.g. a spy and

his target). Thus, I believe that this definition has the potential to capture many

disparate and interesting spatio-temporal patterns and that it is, in this sense, the

“correct” spatio-temporal clustering problem to consider.

Definition 7.2.1 (Spatio-temporal k-Center Problem). Given a set of S sensors

with associated streams X = {X1, X2, ..., XS} of counts over T time steps so that

Xi = Xi1, Xi2, ..., XiT , assign counts to k clusters (for each sensor at each time

169

step) Cij1, Cij2, ..., Cijk such that
∑

`Cij` = Xij for all i and j, so as to minimize

the maximum τ -order empirical entropy (Hτ (X)) over all k of the stream sets C` =

{Cij`}j.

It would also be interesting to consider a generalization of this definition to

include the consideration of outlying observations.

Definition 7.2.2 (Robust Spatio-temporal k-Center Problem). This problem gen-

eralizes the definition of the spatio-temporal k-center problem to the robust case

where some percentage q of the observed counts (or Q = q ·∑S
i=1

∑T
j=1 Xij total

observations) remain unassigned to any center.

Solutions to these problems would likely be based on a range searching struc-

ture (presented in Chapter 6) that operates without decompressing the data and is

built within this framework.

Finally, I believe that it is important to have theoretically sound yet prac-

tically reasonable frameworks for our observations of the world around us. Many

problems remain to be considered within such a framework and other frameworks

could still be created. The framework presented here makes one important step

towards observing, collecting, and analyzing the ever present motion of objects.

170

Bibliography

[AB92] Amihood Amir and Gary Benson. Efficient two-dimensional compressed
matching. In James A. Storer and Martin Cohn, editors, Proceedings of
the IEEE Data Compression Conference, DCC, pages 279–288, Snow-
bird, Utah, 1992. IEEE Computer Society.

[ABB+04] Arvind Arasu, Brian Babcock, Shivanth Babu, Jon McAlister, and Jen-
nifer Widom. Characterizing memory requirements for queries over
continuous data streams. ACM Transactions on Database Systems,
29(1):162–194, June 2004.

[ABFC96] Amihood Amir, Gary Benson, and Martin Farach-Colton. Let sleeping
files lie: Pattern matching in Z-compressed files. Journal of Computer
and System Sciences, 52(2):299–307, April 1996.

[ACI+00] Neal J. Alewine, James C. Colson, Abraham P. Ittycheriah, Stephane H.
Maes, and Paul A. Moskowitz. Automated traffic mapping. U.S. Patent
6150961, filed Nov 24, 1998, and issued Nov 21, 2000.

[AdBG09] Mohammad Ali Abam, Mark de Berg, and Joachim Gudmundsson. A
simple and efficient kinetic spanner. Computational Geometry: Theory
and Applications, pages 306–310, April 2009.

[AE98] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and
its relatives. In B. Chazelle, J. Goodman, and R. Pollack, editors, Ad-
vances in Discrete and Computational Geometry, pages 1–56. American
Mathematical Society, 1998.

[AGE+02] Pankaj K. Agarwal, Leonidas J. Guibas, Herbert Edelsbrunner, Jeff Er-
ickson, Michael Isard, Sariel Har-Peled, John Hershberger, Christian
Jensen, Lydia Kavraki, Patrice Koehl, Ming Lin, Dinesh Manocha, Dim-
itris Metaxas, Brian Mirtich, David M. Mount, S. Muthukrishnan, Di-
nesh Pai, Elisha Sacks, Jack Snoeyink, Subhash Suri, and Ouri Wolef-
son. Algorithmic issues in modeling motion. ACM Computing Surveys,
34:550–572, December 2002.

[AGG02] Pankaj K. Agarwal, Jie Gao, and Leonidas J. Guibas. Kinetic medians
and kd-trees. In Rolf H. Möhring and Rajeev Raman, editors, Pro-
ceedings of the 10th Annual European Symposium on Algorithms, pages
5–16, Rome, Italy, 2002. Lecture Notes in Computer Science.

[AGMR98] Gerhard Albers, Leonidas J. Guibas, Joseph S. B. Mitchell, and Thomas
Roos. Voronoi diagrams of moving points. International Journal of
Computational Geometry Applications, 8(3):365–380, 1998.

171

[AM00] Sunil Arya and David M. Mount. Approximate range searching. Com-
putational Geometry: Theory and Applications, 17:135–152, 2000.

[AMN+98] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman,
and Angela Y. Wu. An optimal algorithm for approximate nearest neigh-
bor searching in fixed dimensions. Journal of the ACM, 45(6):891–923,
1998.

[AP08] Pankaj K. Agarwal and Jeff M. Phillips. An efficient algorithm for 2D
Euclidean 2-center with outliers. In Dan Halperin and Kurt Mehlhorn,
editors, Proceedings of the 16th Annual European Symposium on Algo-
rithms, pages 64–75, Karlsruhe, Germany, 2008. Lecture Notes in Com-
puter Science.

[APKG07] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas.
Adaptively sampled particle fluids. ACM Transactions on Graphics,
26(3):48, 2007.

[ASSC02] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal
Cayirci. Wireless sensor networks: A survey. Computer Networks,
38(4):393–422, 2002.

[Ata85] Mikhail J. Atallah. Some dynamic computational geometry poblems.
Computers & Mathematics with Applications, 11(12):1171–1181, 1985.

[BBD+02] Brian Babcock, Shivanth Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and issues in data stream systems. In Proceed-
ings of the Twenty-first Symposium on Principles of Database Systems,
pages 1–16, Madison, Wisconsin, USA, 2002. ACM.

[BBKS00] Sergei Bespamyatnikh, Binay K. Bhattacharya, David G. Kirkpatrick,
and Michael Segal. Mobile facility location. In Proceedings of the 4th
International Workshop on Discrete Algorithms and Methods for Mo-
bile Computing and Communications (DIAL-M), pages 46–53, Boston,
Massachusetts, USA, 2000. ACM.

[BCMR03] Dania Brunello, Giancarlo Calvagno, Gian A. Mian, and Roberto Ri-
naldo. Lossless compression of video using temporal information. IEEE
Transactions on Image Processing, 12(2):132–139, Feb 2003.

[BE97] Marshall Bern and David Eppstein. Approximation algorithms for ge-
ometric problems. In Dorit S. Hochbaum, editor, Approximation Algo-
rithms for NP-hard Problems, chapter 8. PWS publishing co., Boston,
1997.

[Ben75] Jon Louis Bentley. Multidimensional binary saerch trees used for as-
sociative searching. Communications of the ACM, 18(9):509–517, Sept.
1975.

172

[BFC04] Michael A. Bender and Martin Farach-Colton. The level ancestor prob-
lem simplified. Theoretical Computer Science, 321:5–12, 2004.

[BG99] Julien Basch and Leonidas J. Guibas. Data structures for mobile data.
Journal of Algorithms, 31(1):1 – 28, April 1999.

[BGH97] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data struc-
tures for mobile data. In Proceedings of the Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 747–756, New Orleans,
Louisiana, USA, 1997. ACM.

[BGZ97] Julien Basch, Leonidas J. Guibas, and Li Zhang. Proximity problems
on moving points. In Proceedings of the Thirteenth Annual symposium
on Computational Geometry, pages 344–351, Nice, France, 1997. ACM
Press.

[BO03] Brian Babcock and Chris Olston. Distributed top-k monitoring. In
Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors, Proceedings
of the 2003 ACM SIGMOD International conference on management of
data, pages 28–39, San Diego, California, USA, 2003. ACM.

[BW94] M. Burrows and D. J. Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, Palo
Alto, California, 1994.

[CG06] Richard Cole and Lee-Ad Gottlieb. Searching dynamic point sets in
spaces with bounded doubling dimension. In Jon M. Kleinberg, editor,
Proceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing, pages 574 – 583, Seattle, Washington, USA, 2006. ACM.

[Cha98] Timothy M. Chan. Approximate nearest neighbor queries revisited. Dis-
crete & Computational Geometry, 20:359–373, 1998.

[Cha09] Bernard Chazelle. Natural algorithms. In Claire Mathieu, editor, Pro-
ceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 422–431, New York, NY, USA, 2009. SIAM.

[Che08] Ke Chen. A constant factor approximation algorithm for k-median clus-
tering with outliers. In Shang-Hua Teng, editor, Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
826–835, San Francisco, California, USA, 2008. SIAM.

[CHM95] Jose Cuena, Josefa Hernandez, and Martin Molina. Knowledge-based
models for adaptive traffic management systems. Transportation Re-
search Part C: Emerging Technologies, 3(5):311–337, October 1995.

[CHSV08] Yu-Feng Chien, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter.
Geometric burrows-wheeler transform: Linking range searching and text

173

indexing. In Proceedings of the Data Compression Conference, pages
252–261, Snowbird, Utah, 2008. IEEE Computer Society.

[CHSV10] Sheng-Yuan Chiu, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vit-
ter. I/O-efficient compressed text indexes: From theory to practice. In
James A. Storer and Michael W. Marcellin, editors, Proceedings of the
Data Compression Conference, pages 426–434, Snowbird, Utah, 2010.
IEEE Computer Society.

[CKMN01] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan.
Algorithms for facility location problems with outliers. In Proceedings of
the Twelfth Annual Symposium on Discrete Algorithms, pages 642–651,
Washington, DC, USA, 2001. ACM / SIAM.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2001.

[CMY08] Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for dis-
tributed functional monitoring. In Shang-Hua Teng, editor, Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1076–1085, San Francisco, California, USA, 2008. SIAM.

[CMZ07] Graham Cormode, S. Muthukrishnan, and Wei Zhuang. Conquering the
divide: Continuous clustering of distributed data streams. In Proceedings
of the 23rd International Conference on Data Engineering, pages 1036–
1045, Istanbul, Turkey, 2007. IEEE Computer Society.

[CT06] T. M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley-IEEE, second edition, 2006.

[CTS97] Michael M. Chang, A. Murat Tekalp, and M. Ibrahim Sezan. Simultane-
ous motion estimation and segmentation. IEEE Transactions on Image
Processing, 6(9):1326–1333, 1997.

[DFHT05] Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and
Dimitrios M. Thilikos. Fixed-parameter algorithms for the (k, r)-center
in planar graphs and map graphs. ACM Transactions on Algorithms,
1(1):33–47, July 2005.

[dFM10] Guilherme D. da Fonseca and David M. Mount. Approximate range
searching: The absolute model. Computational Geometry: Theory and
Applications, 43:434–444, 2010.

[DGL10] Bastian Degener, Joachim Gehweiler, and Christiane Lammersen. The
kinetic facility location problem. Algorithmica, 57(3):562–584, July
2010.

174

[DKR06] Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. Pro-
cessing approximate aggregate queries in wireless sensor networks. Inf.
Syst., 31(8):770–792, 2006.

[DKR07] Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. Dis-
semination of compressed historical information in sensor networks. The
VLDB Journal, 16(4):439–461, 2007.

[DM98] Yining Deng and B. S. Manjunath. NeTra-V: Toward an object-based
video representation. IEEE Transactions on Circuits and Systems for
Video Technology, 8(5):616–627, 1998.

[EL75] Paul Erdös and László Lovász. Problems and results on 3-chromatic
hypergraphs and some related questions. Infinite and Finite Sets, Col-
loquia Mathematica Societatis János Bolyai 10:609–627, 1975.

[FG88] Thomás Feder and Daniel Greene. Optimal algorithms for approximate
clustering. In Proceedings of the 20th Annual ACM Symposium on The-
ory of Computing, pages 434–444, Chicago, Illinois, 1988. ACM Press.

[FLMM05] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukr-
ishnan. Structuring labeled trees for optimal succinctness, and beyond.
In Proceedings of the IEEE Symposium on Foundations of Computer
Science, pages 184–196, 2005.

[FLMM06] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukr-
ishnan. Compressing and searching XML data via two zips. In Les Carr,
David De Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin,
editors, Proceedings of the 15th International Conference on World Wide
Web, pages 751–760, Edingburgh, Scotland, UK, 2006. ACM.

[FM00] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures
with applications. In Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, FOCS, pages 390–398, Redondo
Beach, California, USA, 2000. IEEE Computer Society.

[FM05] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Jour-
nal of the ACM, 52(4):552–581, July 2005.

[FM09] Sorelle A. Friedler and David M. Mount. Compressing kinetic data from
sensor networks. In Shlomi Dolev, editor, Proceedings of the Fifth Inter-
national Workshop on Algorithmic Aspects of Wireless Sensor Networks
(AlgoSensors), volume 5804, pages 191 – 202, Rhodes, Greece, 2009.
Lecture Notes in Computer Science.

[FM10a] Sorelle A. Friedler and David M. Mount. Approximation algorithm for
the kinetic robust k-center problem. Computational Geometry: Theory
and Applications, 43:572–586, 2010. doi: 10.1016/j.comgeo.2010.01.001.

175

[FM10b] Sorelle A. Friedler and David M. Mount. Spatio-temporal range search-
ing over compressed kinetic sensor data. In Mark de Berg and Ulrich
Meyer, editors, Proceedings of the 18th Annual European Symposium on
Algorithms, volume 6346, pages 386–397, Liverpool, UK, Sept. 2010.
Lecture Notes in Computer Science.

[FV07] Paolo Ferragina and Rossano Venturini. A simple storage scheme
for strings achieving entropy bounds. Theoretical Computer Science,
372(1):115–121, March 2007.

[Gal91] Didier Le Gall. MPEG: A video compression standard for multimedia
applications. Communications of the ACM, 34(4):46–58, 1991.

[GGN06] Jie Gao, Leonidas J. Guibas, and An Nguyen. Deformable spanners
and applications. Computational Geometry: Theory and Applications,
35(1):2–19, 2006.

[Gil06] Ralph Gillmann. Accuracy assessment of traffic monitoring devices ve-
hicle by vehicle. Transportation Research Record: Journal of the Trans-
portation Research Board, 1945:56–60, 2006.

[GJS96] Prosenjit Gupta, Ravi Janardan, and Michiel Smid. Fast algorithms for
collision and proximity problems involving moving geometric objects.
Computational Geometry: Theory and Applications, 6:371–391, 1996.

[GKS08] Sorabh Gandhi, Rajesh Kumar, and Subhash Suri. Target counting
under minimal sensing: Complexity and approximations. Workshop on
Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors), pages
30–42, 2008.

[GN06] Rodrigo González and Gonzalo Navarro. Statistical encoding of succinct
data structures. Combinatorial Pattern Matching, pages 294–305, 2006.

[GNSL09] Sorabh Gandhi, Suman Nath, Subhash Suri, and Jie Liu. GAMPS:
Compressing multi sensor data by grouping and amplitude scaling. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 771–784, Providence, Rhode Island, USA, 2009.
ACM.

[Gol99] Andrew R. Golding. Automobile navigation system with dynamic traffic
data. U.S. Patent 5933100, filed Dec 27, 1995, and issued Aug 3, 1999.

[Gon85] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38:293–306, 1985.

[GR08] Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for
doubling metric spaces. In Proceedings of the 16th Annual European
Symposium on Algorithms, volume 5193, pages 478–489, Karlsruhe, Ger-
many, 2008. Lecture Notes in Computer Science.

176

[Gri98] A. P. Gribbon. Field test of nonintrusive traffic detection technologies.
Mathematical and Computer Modelling, 27(9-11):349–352, 1998.

[GRS83] Leonidas J. Guibas, Kyle Ramshaw, and Jorge Stolfi. A kinetic frame-
work for computational geometry. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science, pages 100–111, Tuc-
son, Arizona, 1983. IEEE Computer Society.

[GTH08] Alexandre Guitton, Niki Trigoni, and Sven Helmer. Fault-tolerant com-
pression algorithms for sensor networks with unreliable links. Technical
Report BBKCS-08-01, Birkbeck, University of London, 2008.

[Gui98] Leonidas J. Guibas. Kinetic data structures: A state of the art report.
In Proceedings of the third workshop on the Algorithmic Foundations of
Robotics, pages 191–209, Houston, Texas, 1998.

[Gui02] Leonidas J. Guibas. Sensing, tracking and reasoning with relations.
IEEE Signal Processing Magazine, 19(2):73–85, Mar 2002.

[Gui04] Leonidas J. Guibas. Kinetic data structures. In D. Mehta and S. Sahni,
editors, Handbook of Data Structures and Applications, pages 23–1–23–
18. Chapman and Hall/CRC, 2004.

[Ham71] Frank R. Hampel. A general qualitative definition of robustness. The
Annals of Mathematical Statistics, 42(6):1887–1896, Dec 1971.

[Hoc95] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard
Problems. PWS publishing Co., Boston, 1995.

[HP04] Sariel Har-Peled. Clustering motion. Discrete & Computational Geom-
etry, 31(4):545–565, 2004.

[HPM06] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low di-
mensional metrics and their applications. SIAM Journal on Computing,
35(5):1148–1184, 2006.

[HS85] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for
the k-center problem. Mathematics of Operations Research, 10(2):180–
184, 1985.

[HSV10] Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Compression, in-
dexing, and retrieval for massive string data. In Amihood Amir and
Laxmi Parida, editors, Proceedings of the 21st Annual Symposium on
Combinatorial Pattern Matching, volume 6129, pages 260–274, New
York, NY, USA, 2010. Lecture Notes in Computer Science.

[Huf52] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, Sept. 1952.

177

[JN06] Colette Johnen and Le Huy Nguyen. Self-stabilizing weight-based clus-
tering algorithm for ad hoc sensor networks. Workshop on Algorithmic
Aspects of Wireless Sensor Networks (AlgoSensors), pages 83–94, 2006.

[Kah91] Simon Kahan. A model for data in motion. In Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, pages 267–277, New
Orleans, Louisiana, USA, 1991. ACM.

[KEK+98] Sung-Wook Kim, Yongsoon Eun, Hyungjin Kim, Jaein Ko, Wook-Jin
Jung, Young Kyu Choi, Young Gil Cho, and Dong-Il Cho. Performance
comparison of loop/piezo and ultrasonic sensor-based traffic detection
systems for collecting individual vehicle information. In Proceedings of
6th World Congress on Intelligent Transport Systems, 1998.

[KH79] O. Kariv and S.L. Hakimi. An algorithmic approach to network location
problems. Part 1: The p-centers. SIAM Journal on Applied Mathematics,
37:513–538, 1979.

[KL04] Robert Krauthgamer and James R. Lee. Navigating nets: Simple al-
gorithms for proximity search. In J. Ian Munro, editor, Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 798 – 807, New Orleans, Louisiana, USA, 2004. SIAM.

[KM99] Rao S. Kosaraju and Giovanni Manzini. Compression of low entropy
strings with Lempel–Ziv algorithms. SIAM Journal on Computing,
29(3):893–911, 1999.

[Man01] Giovanni Manzini. An analysis of the Burrows–Wheeler transform. Jour-
nal of the ACM, 48(3):407–430, May 2001.

[Mat94] Jirka Matousek. Geometric range searching. Computing Surveys,
26(4):422–461, 1994.

[MIT] MIT Media Lab. The Owl project. http://owlproject.media.mit.

edu/.

[MK08] Richard Matthew McCutchen and Samir Khuller. Streaming algorithms
for k-center clustering with outliers and with anonymity. In Proceed-
ings of Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, volume 5171, pages 165–178, Boston,
Massachusetts, USA, 2008. Lecture Notes in Computer Science.

[MNP+04] David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Sil-
verman, and A. Y. Wu. A computational framework for incremental
motion. In Jack Snoeyink and Jean-Daniel Boissonnat, editors, Proceed-
ings of the 20th ACM Symposium on Computational Geometry, pages
200–209, Brooklyn, New York, USA, 2004. ACM.

178

http://owlproject.media.mit.edu/
http://owlproject.media.mit.edu/

[Mon05] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress
in Physics, 68:1703–1759, 2005.

[NM07] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):2, 2007.

[NS08] Sotiris Nikoletseas and Paul G. Spirakis. Efficient sensor network de-
sign for continuous monitoring of moving objects. Theoretical Computer
Science, 402(1):56–66, 2008.

[PAAV03] Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeffrey Scott
Vitter. A dynamic scalable kd-tree. In Proceedings of the International
Symposium on Spatial and Temporal Databases, volume LNCS 2750,
2003.

[Ple80] J. Plesnik. On the computational complexity of centers locating in a
graph. Applications of Mathematics, 25(6):445–452, 1980.

[Ple87] J. Plesnik. A heuristic for the p-center problem in graphs. Discrete
Applied Mathematics, 17(3):263–268, 1987.

[POR] PORTAL. Portland oregon regional transportation archive listing. http:
//portal.its.pdx.edu/.

[POS] POST. Pacific ocean shelf tracking project. http://www.postcoml.

org/.

[Ris76] Jorma Rissanen. Generalized Kraft inequality and arithmetic coding.
IBM Journal of Research and Development, 20(3):198–203, May 1976.

[RL87] Peter J. Rousseeuw and Annick M. Leroy. Robust Regression and Outlier
Detection. New York: Wiley, 1987.

[Rob81] John T. Robinson. The K-D-B-Tree: A search structure for large mul-
tidimensional dynamic indexes. In Y. Edmund Lien, editor, Proceedings
of the 1981 ACM SIGMOD International Conference on Management
of Data, pages 10–18, Ann Arbor, Michigan, 1981. ACM Press.

[Rou84] Peter J. Rousseeuw. Least median of squares regression. Journal of the
American Statistical Association, 79(388):871–880, 1984.

[SA95] Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and
Their Geometric Applications. Cambridge University Press, 1995.

[Sam84] Hanan Samet. The quadtree and related hierarchical data structures.
Computing Surveys, 16(2):187–260, June 1984.

179

http://portal.its.pdx.edu/
http://portal.its.pdx.edu/
http://www.postcoml.org/
http://www.postcoml.org/

[SG06] Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data struc-
tures into entropy bounds. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1230–1239, Mi-
ami, Florida, USA, 2006. ACM Press.

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27:379–423, 623–656, July, October 1948.

[Sha94] Micha Sharir. Almost tight upper bounds for lower envelops in higher
dimensions. Discrete and Computational Geometry, 12(1):327–345, Dec
1994.

[SM06] Christopher M. Sadler and Margaret Martonosi. Data compression al-
gorithms for energy-constrained devices in delay tolerant networks. In
Andrew T. Campbell, Philippe Bonnet, and John S. Heidemann, editors,
Proceedings of the 4th International Conference on Embedded Networked
Sensor Systems, pages 265–278, Boulder, Colorado, USA, November
2006. ACM.

[SS07] Nicolas Saunier and Tarek Sayed. Automated analysis of road safety
with video data. Transportation Research Record: Journal of the Trans-
portation Research Board, 2019:57–64, 2007.

[ST83] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic
trees. Journal of Computer and System Sciences, 26(3):362–391, 1983.

[ST95] Elmar Schomer and Christian Thiel. Efficient collision detection for
moving polyhedra. In Proceedings of the Eleventh Annual Symposium
on Computational Geometry, pages 51–60, Vancouver, B.C., Canada,
1995. ACM Press.

[ST96] Elmar Schomer and Christian Thiel. Subquadratic algorithms for the
general collision detection problem. In Abstracts 12th European Work-
shop on Computational Geometry, pages 95–101, Münster, Germany,
1996.

[SWP08] Emad Soroush, Kui Wu, and Jian Pei. Fast and quality-guaranteed
data streaming in resource-constrained sensor networks. In Xiaohua Jia,
Ness B. Shroff, and Peng-Jun Wan, editors, Proceedings of the Ninth
ACM International Symposium on Mobile ad hoc networking and com-
puting, pages 391–400, Hong Kong, China, 2008. ACM.

[Tel] TeleAtlas. Dynamic content - real time traffic information. http:

//www.teleatlas.com/OurProducts/MapEnhancementProducts/

DynamicContent/index.htm.

[THH00] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic
states in empirical observations and microscopic simulations. Physical
Review E, 62:1805–1824, 2000.

180

http://www.teleatlas.com/OurProducts/MapEnhancementProducts/DynamicContent/index.htm
http://www.teleatlas.com/OurProducts/MapEnhancementProducts/DynamicContent/index.htm
http://www.teleatlas.com/OurProducts/MapEnhancementProducts/DynamicContent/index.htm

[Tre10] Martin Treiber. Dynamic traffic simulation. http://www.

traffic-simulation.de/, Jan 2010.

[Wan98] Demin Wang. Unsupervised video segmentation based on watersheds
and temporal tracking. IEEE Transactions on Circuits and Systems for
Video Technology, 8(5):539–546, 1998.

[WER07] Zhimin Wang, Sebastian Elbaum, and David S. Rosenblum. Automated
generation of context-aware tests. In Proceedings of the 29th Interna-
tional Conference on Software Engineering, pages 406–415, Minneapolis,
MN, USA, 2007. IEEE Computer Society.

[WILW07] Christopher R. Wren, Yuri A. Ivanov, Darren Leigh, and Jonathan West-
bues. The MERL motion detector dataset: 2007 workshop on massive
datasets. Technical Report TR2007-069, Mitsubishi Electric Research
Laboratories, Cambridge, MA, USA, August 2007.

[Wol02] Ouri Wolfson. Moving objects information management: The database
challenge (vision paper). In Alon Y. Halevy and Avigdor Gal, edi-
tors, Proceedings of the 5th International Workshop on Next Generation
Information Technologies and Systems, pages 75–89, Ceasarea, Israel,
2002. Lecture Notes in Computer Science.

[WZ94] Aaron D. Wyner and Jacob Ziv. The sliding-window Lempel-Ziv algo-
rithm is asymptotically optimal. Proceedings of the IEEE, 82(6):872–877,
Jun 1994.

[YZ09] Ke Yi and Qin Zhang. Multi-dimensional online tracking. In Claire
Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1098–1107, New York, NY, USA,
2009. SIAM.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequen-
tial data compression. IEEE Transactions on Information Theory,
23(3):337–342, May 1977.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of individual sequences
via variable-rate coding. IEEE Transactions on Information Theory,
24(5):530–536, 1978.

181

http://www.traffic-simulation.de/
http://www.traffic-simulation.de/

Index

approximate range searching, 32–35
absolute error model, 34
fat convex ranges, 34
relative error model, 33

aspect ratio (α), 17, 34

BBD-tree, 34, 157
quadtree box, 158
shrink, 34, 158
split, 34, 158

Burrows-Wheeler Transform, 29, 30

centroid shrinking, 158
clumps

set of, 149
compressed matching problem, 30
compressed suffix array, 31

data streams, 21
blocking queries, 22

doubling dimension, 37, 42, 93

empirical entropy, 27–29, 107, 111
kth order, 28
0th order, 28
conditional, 113
joint, 112

empirically (δ,m)-local sensor system,
123

empirically m-local sensor system, 123
encode, 25
entropy, 25, 87, 110

conditional, 90
joint, 88
k-local, 90
normalized, 87, 110
normalized joint, 88, 110

entropy encoding algorithm, 25
expanded-greedy algorithm, 47

expanded disk, 47
greedy disk, 47

hierarchy of discrete centers, 18

base distance, 46
children, 18
cousins, 18
covering, 18
neighbors, 19

independence
empirical, 113
limited empirical, 116
limited statistical, 115
statistical, 111

k-center problem, 39
absolute, 40
approximation, 40
discrete, 14, 40

k-clusterable, 92
k-local sensor system, 85, 90, 120
kinetic k-center problem, 41
kinetic data, 37, 80
kinetic data structures (KDS), 12, 15–

19, 36, 38, 82
2-D convex hull, 16
certificate, 16, 38, 69–71
compactness, 16, 39, 73
deformable spanner, 17, 44
efficiency, 16, 38, 73–74
evaluation of, 16, 38
locality, 16, 39, 73
responsiveness, 16, 38, 74–75

kinetic robust k-center problem, 36–76

limited independence, 108
lossless compression, 25, 79

approximation, 99
lossy compression, 25, 79
LZ78, 137

dictionary, 137
words, 137

motion-sensitive algorithms, 12, 82
mutually k-close, 90, 120

182

prefix-completeness, 138
probability

observed, 112
statistical, 110

range searching over clumps, 149, 152
range sketching, 51
range-sketch query, 54
robust k-center problem, 40
robustness, 37, 39, 83

sensor networks, 20
fault tolerance, 20
scalability, 20

sensors, 20
short-haul KDS bit rate, 102
spanner, 17

stretch factor, 45
spatial range query, 132
spatio-temporal range query, 133, 148
statistically (δ,m)-local sensor system,

120
statistically m-local sensor system (see

also k-local sensor system), 120
substring queries, 31

temporal range query, 132
internal, 140, 142
overlapping, 140, 142

183

	List of Tables
	List of Figures
	Introduction
	Contributions

	Literature Review
	Data Structures for Moving Points
	Kinetic Data Structures Model
	Sensors and Streams
	Data Compression and Entropy
	Empirical Entropy

	Compressed Text Indexing
	Approximate Range Searching

	Approximation Algorithm for the Kinetic Robust K-Center Problem
	Introduction
	Contributions

	Weak Hierarchical Spanner
	Robust K-Center Algorithm
	Intuitive Explanation
	Preconditions
	The Discrete Problem
	The Absolute Problem

	Kinetic Spanner Maintenance and Quality
	Certificates
	Preconditions
	Quality

	Non-Robust Kinetic K-Center Algorithm

	A Sensor-Based Framework For Kinetic Data Compression
	Introduction
	Data Framework
	Compression Results
	Partitioning Lemma
	Compression Theorem

	Efficiency with Respect to Short-Haul KDS

	Realistic Issues in Compression of Kinetic Sensor Data
	Introduction
	Statistical Setting
	Empirical Setting
	Limited Independence
	Compression Space Bounds
	Statistical Setting
	Empirical Setting

	Experimental Results

	Spatio-temporal Range Searching Over Compressed Kinetic Sensor Data
	Introduction
	Contributions

	Temporal Range Searching
	Group Setting
	Semigroup Setting

	Spatio-temporal Range Searching
	Experimental Results

	Conclusion
	Robust Kinetic Data Structures
	Open Problems

	Observation-based Framework for Objects in Motion
	Open Problems

	Bibliography
	Index

