Geometric Algorithms for Objects in Motion

Dissertation Defense Sorelle Friedler

Committee:

David Mount (Chair), William Gasarch Samir Khuller, Steven Selden, Amitabh Varshney

July 30, 2010

Motivation

Motivation

Computer Science

- Graphics: Image / video segmentation and compression
- Databases: Maintenance over time
- Sensor Networks: Data analysis
- Cell phone users: Motion data analysis
 - 4.6 billion subscribers worldwide (in 2009)
 - > 4.1 billion text messages per day in the US (in 2009)
- Biology
 - Mathematical ecology: Migratory paths, invasive species
 - Genomic data analysis: HIV strain analysis
- Engineering
 - Traffic patterns and identification

Outline

Kinetic Robust K-Center Problem

Existing Frameworks for Kinetic Data

- Atallah (1983)
 - Polynomial motion of degree k
 - Motion known in advance
 - Points lie in R^d
 - ▶ Analysis in R^{d+1}
- Kahan (1991)
 - Bounds on point velocity
 - Update function provided
 - Limit queries to function

Kinetic Data Structures (Basch Guibas Hershberg)

- (Basch, Guibas, Hershberger 1997) time
- Points have flight plans (algebraic expressions) that can change

Kinetic, Robust, K-Center Problem

- <u>k-center problem</u>: choose k centers that minimize the maximum distance from any point to its closest center
- robust k-center problem: allow a fraction (1-t) of the points to remain unclustered

Results

- Discrete: centers taken from input
- Absolute: centers any point in space
- (3+ε)-approximation algorithm for discrete kcenter
 - Improves Gao et al. 8-approximation
 - Close to Charikar *et al.* 3-approximation
- (4+ ε)-approximation algorithm for absolute kcenter
 - First absolute solution

• Efficient by kinetic data structure standards

A Sensor-Based Framework for Kinetic Data Compression

Existing Frameworks for Sensor Data

- Gandhi, Kumar, Suri (2008)
 - Sensors can count objects within their detection region
- Guitton, Skordylis, Trigoni (2007)
 - Sensors can calculate traffic flow (cars/time), occupancy (cars/area)

Kastrinaki (2003 Survey)

 Sensors can calculate object speed, change in angle, etc

Motivation

- Develop a framework for kinetic data from sensors
 - No advance object motion knowledge
 - No restrictions on object motion
 - Reasonable assumptions of what a sensor can know
 - Efficiency analysis that is <u>motion sensitive</u>

Our Framework

- Detection region around each sensor (stationary sensors)
- Point motion unrestricted
- No advance knowledge about motion
- Each sensor reports the count of points within its region at each synchronized time step
- <u>k-local</u>: Sensor outputs statistically only dependent on k nearest neighbors

sensor balls

Data Collection

Data based on underlying geometric motion

Motivation: Data Compression

- <u>Kinetic data</u>: data generated by moving objects
- Sensors collect data
- Large amounts of data
- Want to analyze it later
- Don't know what questions we'll want to ask in advance
- Next: Lossless data compression
- Later: Retrieval

Entropy

Consider the string generated by a random process...

 <u>Entropy</u>: The information content of a string or a measurement of the predictability of the random process

 $-\Sigma_x pr(x) \log pr(x)$

• Example: A weighted coin that's always heads vs. a normal coin:

 $-(1 \log 1) = 0 \text{ vs.} -(\frac{1}{2} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}{2}) = 1$

Entropy Generalizations

- Joint entropy: The entropy for joint probabilities of a set of events occurring
- Normalized entropy: bits to encode each character, entropy/n for strings of length n
- Joint entropy chain rule (X = {X₁, X₂, ..., X_S}):
 H(X) = H(X₁)+H(X₂ | X₁)+...+H(X_S | X₁,...,X_{S-1})
- <u>k-local entropy (H_k)</u>: normalized joint entropy of a set of streams that are only dependent on up to k streams from their k nearest neighbors

Finding a Data Compression Algorithm

Goal: smallest *lossless encoding* of sensor data

- **Optimal**: encoded (set) length = underlying (joint) entropy
- Idea 1: compress all strings separately
 - Not optimal

Idea 2: compress all strings together

 Window size needed for repetition too large to be practical

Optimal encoded sensor stream length: $H(\mathbf{X}) = H_k(\mathbf{X})$

 Key: compress statistically dependent strings together – want groups of k strings

Data Compression Algorithm: Partitioning Lemma

<u>k-clusterable</u>: A point set that can be clustered into subsets of size at most k+1 so that if p and q are among each other's k nearest neighbors then they are in the same cluster.

2-clusterable example

Data Compression Algorithm: Partitioning Lemma

<u>k-clusterable</u>: A point set that can be clustered into subsets of size at most k+1 so that if p and q are among each other's k nearest neighbors then they are in the same cluster.

not 2-clusterable example

Data Compression Algorithm: Partitioning Lemma

Lemma: There exists an integral constant *c* such that for all *k*>0 any point set can be partitioned into *c* partitions that are each *k*clusterable.

Data Compression Algorithm

Partition and cluster the sensors, then compress

for each partition P_i

for each cluster in P_i

combine the cluster's streams into one with longer characters and compress it

return the union of the compressed streams

Data Compression Algorithm

- Proof Sketch:
 - The joint entropy of the streams is the optimal length
 - Recall: $H(\mathbf{X}) = H_k(\mathbf{X})$
 - Sensor outputs are k-local, so each compressed partition is the optimal length: <u>statistically dependent streams are compressed</u> <u>together</u>
 - There are *c* partitions, so the total length is *c* times optimal
 - ▶ c is O(1)

Realistic Issues in Compression of Kinetic Sensor Data

Two Main Issues and Solutions

Entropy	Independence
 Shannon Entropy assumes an underlying random process 	 Independence strict independence ignores systemic patterns
bounds hold in the limit	 δ -Independence allows limited
 Empirical Entropy relies on observed probabilities 	underlying dependence between sensor outputs

Analysis of Compression Algorithm

Statistical and Empirical Settings

Strict Independence

 $O(S_{opt}(\mathbf{X}))$

<u>δ-Independence</u>

O(max { δ T, S_{opt}(**X**, δ)})

- **X**: set of sensor system observations
- T: length of observed time period
- δ : independence parameter
- ► S_{opt}(**X**): optimal encoding space size for **X**

Locality Experiments

Spatio-temporal Range Searching over Compressed Kinetic Sensor Data

Motivation: Data Retrieval

- <u>Kinetic data</u>: data generated by moving objects
- Sensors collect data
- Large amounts of data
- Want to analyze it later
- Don't know what questions we'll want to ask in advance
- Done: Lossless data compression
- Next: Retrieval without decompressing data

Range Searching: Our Problem

Compress and preprocess the data so as to perform...

• <u>Temporal range query</u>: Given a time interval, return an aggregation of the counts over that time interval. t: 1 2 3 4 5 6 7 8 9 10 11 aggregation type: sum X: 0,0,4,4,5,4,3,3,1, 1, 0

Spatio-temporal range query: Given a time interval and spherical spatial region, return an aggregation of the counts over that time interval and within that region.

Lempel-Ziv Dictionary Compression [LZ78]

 $1 \ 11 \ 2 \ 12 \ 22 \ 121 \ 221 \\ \$_1 \ \$_2 \$_3 \ \$_4 \ \$_5 \ \$_6 \ \$_7$

Create a trie while scanning through a string. The compressed string contains pointers to this dictionary.

(LZ78 is an optimal entropy encoding algorithm.)

Temporal Range Searching

Sensor Clumps

- Recall: The sensors are partitioned, clustered, and compressed
- Set of clumps: A finite set of balls with a packing property limiting the number of intersections of any ball with a clump.
- Lemma: In a single partition, the nearest neighbor balls form a set of clumps that contain the sensor clusters

Range Searching Among Clumps

- <u>Range Searching</u>
 <u>Among Clumps</u>: Given any query range *R* and using a quadtree variant, we can report
 - a subset of clump subsets that form a disjoint cover of the clumps within *R*
 - the subset of clumps that *R* intersects

 Lemma: A quadtree variant based data structure can answer range searching queries among clumps.

Spatio-temporal Range Searching

Main Theorem: By adding an auxiliary data structure to answer temporal range queries to each node in the range searching among clumps solution we can answer spatiotemporal range queries.

- One range searching among clumps structure for each partition
- One temporal range structure for each clump and each internal quadtree node
- Get temporal sums for each clump and overlapped sensor
- Sum over all partitions

Results

Bounds for Range Searching		
	Temporal	Spatio-temporal
Preprocessing time	$O(\operatorname{Enc}(X))$	$O(\operatorname{Enc}(\mathbf{X}))$
Query time	$O(\log T)$	$O(((1/\varepsilon^{d-1}) + \log S)\log T)$
Space	$O(\operatorname{Enc}(X))$	$O(\operatorname{Enc}(\mathbf{X})\log S)$

- X: The set of sensor system observations
- Enc(X): The encoded size (in bits) of the compressed data
- > T: The total time over which data was collected
- S: The total number of sensors
- d: The dimension of the sensor space
- **ε**: An error parameter (for approximate range searching)

First range searching bounds <u>over compressed data</u>

Experimental Results: Space

C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues. The MERL motion detector dataset: 2007 workshop on massive datasets. Technical Report TR 2007-069, Mitsubishi Electronic Research Laboratories, Cambridge, MA, USA, August 2007.

Experimental Results: Time

C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues. The MERL motion detector dataset: 2007 workshop on massive datasets. Technical Report TR 2007-069, Mitsubishi Electronic Research Laboratories, Cambridge, MA, USA, August 2007.

Conclusions and Open Problems

Results

- Robust clustering within the KDS model
- Framework for kinetic sensor data
 - No assumptions about object motion or advance knowledge
- Lossless compression algorithm that takes space O(optimal)
- Realistic analysis to consider empirical entropy and a limited notion of independence
- Spatio-temporal range searching over compressed kinetic sensor data
- Experimental analyses of locality, space, and query time

Spatio-temporal k-Center Problem

simulation by the UNC collision avoidance team

- $\mathbf{X} = \{X_1, ..., X_S\}$
- $X_i = X_{i1}, \dots, X_{ij}, \dots, X_{iT}$
- Assign counts to k clusters C_{ij1}, ..., C_{ijk} such that for all sensors and times i,j
 ∑₁ C_{ij1} = X_{ij}
- Minimize the maximum $H_{\tau}(\mathbf{X})$ over all $C_{l} = \{C_{ijl}\}_{j}$

Future Work: Understanding Motion

Practical	Theoretical
 Relies on reasonable assumptions about motion, data, observations, etc. 	 Algorithm analyses that are motion- sensitive
 Reasonable to code and develop algorithms 	 Allowance for both exact theoretical descriptions of motion and observations

Thank you! Questions?